Here we have to calculate the heat required to raise the temperature of water from 85.0 ⁰F to 50.4 ⁰F.
10.857 kJ heat will be needed to raise the temperature from 50.4 ⁰F to 85.0 ⁰F
The amount of heat required to raise the temperature can be obtained from the equation H = m×s×(t₂-t₁).
Where H = Heat, s =specific gravity = 4.184 J/g.⁰C, m = mass = 135.0 g, t₁ (initial temperature) = 50.4 ⁰F or 10.222 ⁰C and t₂ (final temperature) = 85.0⁰F or 29.444 ⁰C.
On plugging the values we get:
H = 135.0 g × 4.184 J/g.⁰C×(29.444 - 10.222) ⁰C
Or, H = 10857.354 J or 10.857 kJ.
Thus 10857.354 J or 10.857 kJ heat will be needed to raise the temperature.
Answer:
A. Cell
Explanation:
Cells are basic units of structure and function in living things. This means that cells form the parts or an organism and carry out all of the an organism's processes, or functions.
Answer:
Particle Symbol Mass
electron e- 0.0005486 amu
proton p+ 1.007276 amu
neutron no 1.008665
Answer:
21091mg of aspirin the person need to consume
Explanation:
To solve this question we must find the mass of the person in kg. Knowing the lethal dose for aspirin is 400mg/kg of person, we can find the amount of aspirin that the person need to consume to get a lethal dose:
<em>Mass person:</em>
116lb * (1kg / 2.2lb) = 52.7kg
<em>Lethal dose:</em>
52.7kg * (400mg / kg) =
<h3>21091mg of aspirin the person need to consume</h3>