Answer:
The London dispersion force is the weakest intermolecular force. The London dispersion force is a temporary attractive force that results when the electrons in two adjacent atoms occupy positions that make the atoms form temporary dipoles.
Because they’re both made up of two substances that are not chemically combined
Answer:
Mass = 0.32 g
Explanation:
Given data:
Mass of CH₄ = ?
Volume of CH₄ = 500 mL (500 mL× 1L/1000 mL= 0.5 L)
Temperature = 273 K
Pressure = 1 atm
Solution:
Volume of CH₄:
500 mL (500 mL× 1L/1000 mL= 0.5 L)
The given problem will be solve by using general gas equation,
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
By putting values,
1 atm× 0.5 L = n×0.0821 atm.L/ mol.K × 273 K
0.5 atm.L = n×22.4 atm.L/ mol
n = 0.5 atm.L / 22.4 atm.L/ mol
n = 0.02 mol
Mass in gram:
Mass = number of moles × molar mass
Mass = 0.02 mol × 16 g/mol
Mass = 0.32 g
Answer:
Kc = [CH₄] / [H₂]²
Kp = [CH₄] / [H₂]² * (0.082*T)^-1
Explanation:
Equilibrium constant, Kc, is defined as the ratio of the concentrations of the products over the reactants. Also, each concentration of product of reactant is powered to its coefficient.
<em>Pure solids and liquids are not taken into account in an equilibrium</em>
Thus, for the reaction:
C(s)+ 2H₂(g) ⇌ CH₄(g)
Equilibrium constant is:
<h3>Kc = [CH₄] / [H₂]²</h3>
Now, using the formula:
Kp = Kc* (RT)^Δn
<em>Where R is gas constant (0.082atmL/molK), T is the temperature of the reaction and Δn is difference in coefficients of gas products - coefficients of gas reactants (1 - 2= -1)</em>
Replacing:
<h3>Kp = [CH₄] / [H₂]² * (0.082*T)^-1</h3>
<em />
False, rivers tend to flow from high ground to low ground