Answer:both
Explanation:
It depends on where your looking at it from
4 neutrons that are produced along with the Zn and sm. The complete final equation is: ²³⁵U + ¹n →
+ 4 n
<h3>What atomic mass?</h3>
Atomic mass, the quantity of matter contained in an atom of an element.
1) In the left side of the transmutation equation appears:
²³⁵U + ¹n →
Deleting the atomic number (subscript to the left) because the question does not show them as it is focused on a number of neutrons.
2) The right side of the transmutation equation has:
→
+?
3) The total mass number of the left side is 235 + 1 = 236
4) The total mass number of Zn and sm on the right side is 160 + 72 = 232
5) Then, you are lacking 236 - 232 = 4 unit masses on the right side which are the 4 neutrons that are produced along with the Zn and sm.
The complete final equation is:
²³⁵U + ¹n →
+ 4 n
Learn more about the atomic mass here:
brainly.com/question/14250653
#SPJ1
Answer:
0.3936 J/gC
Explanation:
using the formula: q=mcΔt
q= 7032J
m=812g
ΔT = 22C
plug in and solve:
7032=(812)(c)(22)
c=7032/(812)(22)
c=0.39 J/gC
Answer:
The rate equation for this reaction:
![R=k[NH_3]^0](https://tex.z-dn.net/?f=R%3Dk%5BNH_3%5D%5E0)
Explanation:
Decomposition of ammonia:

Rate law of the can be written as;
![R=k[NH_3]^x](https://tex.z-dn.net/?f=R%3Dk%5BNH_3%5D%5Ex)
1) Rate of the reaction , when ![[NH_3]=2.0\times 10^{-3} M](https://tex.z-dn.net/?f=%5BNH_3%5D%3D2.0%5Ctimes%2010%5E%7B-3%7D%20M)
..[1]
2) Rate of the reaction , when ![[NH_3]=4.0\times 10^{-3} M](https://tex.z-dn.net/?f=%5BNH_3%5D%3D4.0%5Ctimes%2010%5E%7B-3%7D%20M)
..[2]
[1] ÷ [2]
![\frac{1.5\times 10^{-6}M/s}{1.5\times 10^{-6}M/s}=\frac{k[2.0\times 10^{-3}M]^x}{k[4.0\times 10^{-3}M]^x}](https://tex.z-dn.net/?f=%5Cfrac%7B1.5%5Ctimes%2010%5E%7B-6%7DM%2Fs%7D%7B1.5%5Ctimes%2010%5E%7B-6%7DM%2Fs%7D%3D%5Cfrac%7Bk%5B2.0%5Ctimes%2010%5E%7B-3%7DM%5D%5Ex%7D%7Bk%5B4.0%5Ctimes%2010%5E%7B-3%7DM%5D%5Ex%7D)
On solving for x , we get ;
x = 0
The rate equation for this reaction:
![R=k[NH_3]^0](https://tex.z-dn.net/?f=R%3Dk%5BNH_3%5D%5E0)
Answer:
The answer to your question is M = 36.49 g
Explanation:
Data
mass = 8.21 g
volume = 4.8064 L
Temperature = 200°C
Pressure = 1.816 atm
M = ?
Process
1.- Convert temperature to °K
°K = 273 + 200
°K = 473
2.- Calculate the number of moles
n = (PV)/RT
n = (1.816)(4.8064)/(0.082)(473)
n = 0.225
3.- Calculate the molar mass
M --------------- 1 mol
8.21 g ---------- 0.225 moles
M = (1 x 8.21)/0.225
M = 36.49 g