<u>Answer</u>:
According to Bohr's theory, an electron's path around the nucleus defines its
energy level.
<u>Explanation</u>:
It the certain energy by which the electrons have occupied there place in the orbitals. They can also be moved to the higher energy level by taking the energy from the surrounding. The emission of light can be seen when the electron falls from the higher energy state to the lower state. The orbital that is close to the atomic centre having the lowest energy level and the one that is found to be far away from the atomic centre has the highest energy level.
Answer:

Explanation:
Hello
In this case, given the reaction:

It means that since the coefficients preceding phosphorous and phosphorous trifluoride are 1 and 4, the correct mole ratio should be:

Because given the mass of phosphorous it is convenient to convert it to moles and then cancel it out with the moles on bottom of the mole ratio.
Bes regards!
Answer: 85.62 L represents volume (V).
Explanation:
Volume is defined as the amount or quantity of a given substance or an object.
According to ideal gas equation:

P = pressure of gas = 4.95 atm
V = Volume of gas = 85.62 L
n = number of moles
R = gas constant =
T =temperature =
Thus 85.62 L represents volume (V).
Answer:
a) f = 3.02x10¹⁵ s⁻¹, and λ = 99.4 nm.
b) 99.4 nm
Explanation:
a) The energy of radiation is given by:
E = h*f
Where h is the Planck constant (6.626x10⁻³⁴ J.s), and f is the frequency. To have the highest frequency, the energy must be the highest too, because they're directly proportional. So we must use E = -E1 = 20x10⁻¹⁹ J
20x10⁻¹⁹ = 6.626x10⁻³⁴xf
f = 3.02x10¹⁵ s⁻¹
The wavelenght is the velocity of light (3.00x10⁸ m/s) divided by the frequency:
λ = 3.00x10⁸/3.02x10¹⁵
λ = 9.94x10⁻⁸ m = 99.4 nm
b) To have the shortest wavelength, it must be the highest energy and frequency, so it would be the same as the letter a) 99.4 nm.
(For a bit of context I will use the reaction between HCl and Mg as an example)
The larger the surface area of the magnesium metal, the more particles are exposed to collide with the aqueous HCl particles to cause the reaction to occur. This increases the frequency per second of collisions, speeding up the rate of reaction.
The effect of a catalyst is to reduce the minimum collision energy which allows the reaction to happen. This does not increase the number of collisions per second, but increases the percentage of successful collisions, which consequently causes the rate of reaction to increase .
I have drawn diagrams showing the effect of surface area, but there isn't really a meaningful diagram that I know of to show the impact of a catalyst (at least not at GCSE level).