The amount of energy released when 0.06 kg of mercury condenses at the same temperature can be calculated using its latent heat of fusion which is the opposite of melting. Latent heat of fusion and melting can be used because they have the same magnitude, but opposite signs. Latent heat is the amount of energy required to change the state or phase of a substance. For latent heat, there is no temperature change. The equation is:
E = m(ΔH)
where:
m = mass of substance
ΔH = latent heat of fusion or melting
According to data, the ΔH of mercury is approximately 11.6 kJ/kg.
E = 0.06kg (11.6 kJ/kg) = 0.696 kJ or 696 J
The answer is D. 697.08 J. Note that small differences could be due to rounding off or different data sources.
Answer:
becuase of the sun
in different places some places would be cold
A. SO2Cl2(g) --> SO2(g) + Cl2(g)
<span>1 mole of SOCl2 becomes 1 mole SO2 and 1 mole Cl2 </span>
<span>1 mole --> 2 moles </span>
<span>entropy increases </span>
Those are both correct! great job, keep up the good work (-:
Answer:
The answer to your question is: 0.25 l
Explanation:
Data
P1 = 1 atm
V1 = 0.5 l
P2 =2 atm
V2 = ?
T = constant
Formula
V1P1 = V2P2
Clear V2 from the formula
V2 = V1P1/P2
Substitution
V2 = (0.5)(1)/2 substitution
= 0.25 l result