Answer:
$$\begin{align*}
P(Y-X=m | Y > X) &= \sum_{k} P(Y-X=m, X=k | Y > X) \\ &= \sum_{k} P(Y-X=m | X=k, Y > X) P(X=k | Y > X) \\ &= \sum_{k} P(Y-k=m | Y > k) P(X=k | Y > X).\end{split}$$
Explanation:
\eqalign{
P(Y-X=m\mid Y\gt X)
&=\sum_kP(Y-X=m,X=k\mid Y\gt X)\cr
&=\sum_kP(Y-X=m\mid X=k,Y\gt X)\,P(X=k\mid Y>X)\cr
&=\sum_kP(Y-k=m\mid Y\gt k)\,P(X=k\mid Y\gt X)\cr
}
P(Y-X=m | Y > X) &= \sum_{k} P(Y-X=m, X=k | Y > X) \\ &= \sum_{k} P(Y-X=m | X=k, Y > X) P(X=k | Y > X) \\ &= \sum_{k} P(Y-k=m | Y > k) P(X=k | Y > X).\end{split}$$
Answer:
a. 0.4544 N
b. 
Explanation:
For computing the normality and molarity of the acid solution first we need to do the following calculations
The balanced reaction



= 0.27264 g


= 0.006816 mol
Now
Moles of
needed is

= 0.003408 mol


= 0.333984 g
Now based on the above calculation
a. Normality of acid is


= 0.4544 N
b. And, the acid solution molarity is


= 0.00005112
=
We simply applied the above formulas
Answer:
The amount of energy transferred to the water is 4.214 J
Explanation:
The given parameters are;
The mass of the object that drops = 5 kg
The height from which it drops = 86 mm (0.086 m)
The potential energy P.E. is given by the following formula
P.E = m·g·h
Where;
m = The mass of the object = 5 kg
g = The acceleration de to gravity = 9.8 m/s²
h = The height from which the object is dropped = 0.086 m
Therefore;
P.E. = 5 kg × 9.8 m/s² × 0.086 m = 4.214 J
Given that the potential energy is converted into heat energy, that raises the 1 g of water by 1°C, we have;
The amount of energy transferred to the water = The potential energy, P.E. = 4.214 J.