Answer:
radius = 0.045 m
Explanation:
Given data:
density of oil = 780 kg/m^3
velocity = 20 m/s
height = 25 m
Total energy is = 57.5 kW
we have now
E = kinetic energy+ potential energy + flow work
![E = \dot m ( \frac{v^2}{2] + zg + p\nu)](https://tex.z-dn.net/?f=E%20%3D%20%5Cdot%20m%20%28%20%5Cfrac%7Bv%5E2%7D%7B2%5D%20%2B%20%20zg%20%2B%20p%5Cnu%29)
![E = \dot m( \frac{v^2}{2] + zg + p_{atm} \frac{1}{\rho})](https://tex.z-dn.net/?f=E%20%3D%20%5Cdot%20m%28%20%5Cfrac%7Bv%5E2%7D%7B2%5D%20%2B%20%20zg%20%2B%20p_%7Batm%7D%20%5Cfrac%7B1%7D%7B%5Crho%7D%29)

solving for flow rate
![\dot m = 99.977we know that [tex]\dot m = \rho AV](https://tex.z-dn.net/?f=%5Cdot%20m%20%3D%2099.977%3C%2Fp%3E%3Cp%3Ewe%20know%20that%20%3C%2Fp%3E%3Cp%3E%5Btex%5D%5Cdot%20m%20%20%3D%20%5Crho%20AV)

solving for d

d = 0.090 m
so radius = 0.045 m
Explanation:
Engineering is science in practical terms. It is the application of scientific findings in problem solving and creating a better world.
How does technological advancements create more problems for engineers?
- Loss of job to automation: the world is driving at automating work processes through the use of specially designed and crafted machinery. Work is now properly being done using machines with little to no human input in the whole process. This is a huge let off for engineers. Engineers have to compete with machines which are their own inventions for jobs now.
- Fast paced work environment: machines can handle work more efficiently and faster than the people making them. There is an increasing race between engineers and their own inventions today for better product delivery. Unless a machine is faulty, they are more productive and efficient than man. This can cause engineers to want to catch up with their own inventions leading to a work life of stress.
- Environmental problems they cannot solve: most inventions use components from the environment. They release effluents that are very difficult to be properly disposed or stored. This is a huge problem for engineers and can lead to ethical calls from the government and the populace. In short, they can create problems they are expected to solve but cannot solve.
- Social problems: engineers can be portrayed as terrible beings for their own inventions. This leads to psychological problems on a good and creative invention. For example, rare earth metals in DR Congo are instrumental in making solar panels, but mining of these metals have forced several thousands of people into hard and intense labor on mines; there is a call on technological firms to stop exploiting people this way for their own gains.
- Misuse of technology: any good technology can be put into the wrong use. A nuclear reaction can be packaged into a bomb and also, it can be the center of electricity generation on a commercial scale. How can engineers solve this kind of problem? Technological inventions are subjective in their usage.
Learn more:
New technology brainly.com/question/5768621
#learnwithBrainly
Answer:
The answer to the question is 514.17 lbf
Explanation:
Volume of cylindrical tank = πr²h = 3.92699 ft³
Weight of tank = 125 lb
Specific weight of content = 66.4 lb/ft³
Mass of content = 66.4×3.92699 = 260.752 lb
Total mass = 260.752 + 125 = 385.75 lb = 174.97 kg
=Weight = mass * acceleration = 174.97 *9.81 = 1716.497 N
To have an acceleration of 10.7 ft/s² = 3.261 m/s²
we have F = m*a = 174.97*(9.81+3.261) = 2287.15 N = 514.17 lbf
Answer:
0.71 lbf
Explanation:
Use ideal gas law:
PV = nRT
where P is absolute pressure,
V is volume,
n is number of moles,
R is universal gas constant,
and T is absolute temperature.
The absolute pressure is the sum of the atmospheric pressure and the gauge pressure.
P = 32 lbf/in² + 14.7 lbf/in²
P = 46.7 lbf/in²
Absolute temperature is in Kelvin or Rankine:
T = 75 + 459.67 R
T = 534.67 R
Given V = 3.0 ft³, and R = 10.731 ft³ psi / R / lb-mol:
PV = nRT
(46.7 lbf/in²) (3.0 ft³) = n (10.731 ft³ psi / R / lb-mol) (534.67 R)
n = 0.02442 lb-mol
The molar mass of air is 29 lbm/lb-mol, so the mass is:
m = (0.02442 lb-mol) (29 lbm/lb-mol)
m = 0.708 lbm
The weight of 1 lbm is lbf.
W = 0.708 lbf
Rounded to two significant figures, the weight of the air is 0.71 lbf.
C why it’s c bc they I just got it right