Answer:
14.52 minutes
<u>OR</u>
14 minutes and 31 seconds
Explanation:
Let's first start by mentioning the specific heat of air at constant volume. We consider constant volume and NOT constant pressure because the volume of the room remains constant while pressure may vary.
Specific heat at constant volume at 27°C = 0.718 kJ/kg*K
Initial temperature of room (in kelvin) = 283.15 K
Final temperature (required) of room = 293.15 K
Mass of air in room= volume * density= (4 * 5 * 7) * (1.204 kg/m3) = 168.56kg
Heat required at constant volume: 0.718 * (change in temp) * (mass of air)
Heat required = 0.718 * (293.15 - 283.15) * (168.56) = 1,210.26 kJ
Time taken for temperature rise: heat required / (rate of heat change)
Where rate of heat change = 10000 - 5000 = 5000 kJ/hr
Time taken = 1210.26 / 5000 = 0.24205 hours
Converted to minutes = 0.24205 * 60 = 14.52 minutes
Answer:
Exit velocity
m/s.
Explanation:
Given:
At inlet:

Properties of steam at 100 bar and 600°C

At exit:Lets take exit velocity 
We know that if we know only one property inside the dome then we will find the other property by using steam property table.
Given that dryness or quality of steam at the exit of nozzle is 0.85 and pressure P=80 bar.So from steam table we can find the other properties.
Properties of saturated steam at 80 bar

So the enthalpy of steam at the exit of turbine



Now from first law for open system

In the case of adiabatic nozzle Q=0,W=0

m/s
So Exit velocity
m/s.
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of that third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
I think will help
Answer:

Explanation:
By Gauss Law for electric field:

Where
is the charge density Q/A. Since we have 2 parallel plates with different charge, the electric field at point P in the gap would be the sum of 2 field



Hi! Hope you're having a great day!