Answer:
9500 kJ; 9000 Btu
Explanation:
Data:
m = 100 lb
T₁ = 25 °C
T₂ = 75 °C
Calculations:
1. Energy in kilojoules
ΔT = 75 °C - 25 °C = 50 °C = 50 K

2. Energy in British thermal units

emf generated by the coil is 1.57 V
Explanation:
Given details-
Number of turns of wire- 1000 turns
The diameter of the wire coil- 1 cm
Magnetic field (Initial)= 0.10 T
Magnetic Field (Final)=0.30 T
Time=10 ms
The orientation of the axis of the coil= parallel to the field.
We know that EMF of the coil is mathematically represented as –
E=N(ΔФ/Δt)
Where E= emf generated
ΔФ= change inmagnetic flux
Δt= change in time
N= no of turns*area of the coil
Substituting the values of the above variables
=1000*3.14*0.5*10-4
=.0785
E=0.0785(.2/10*10-3)
=1.57 V
Thus, the emf generated is 1.57 V
Answer:
Please see the attached Picture for the complete answer.
Explanation:
Answer:
Use a resume header
Explanation:
Create a Summary
Research industry, employer keywords
there are some hints okay
Answer:
1. Poor circuit protection
2.Grounding issue
3. lighting problem
4. Electrical shocks
5. High electricity bills
Explanation: