1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natasha_Volkova [10]
2 years ago
13

To put out a class D metal fire, you must _______ the fire.

Engineering
1 answer:
gladu [14]2 years ago
7 0

To put out a class D metal fire, you must smother the fire and eliminate the oxygen element in the fire.

<h3>What is a Class D fire?</h3>

A class D fire is a type of fire that cannot be extinguished by water. This is because adding water to it reacts with other elements in the fire intensifying the fire even more.

Smothering in this context involves adding a solution like carbon dioxide (CO2) into the fire, this results in a reduction of oxygen in the atmosphere surrounding the class D fire.

By so doing, smothering the fire eliminates the oxygen element in the fire, thereby extinguishing the fire.

You can learn more about extinguishing fires here https://brainly.in/question/760550

#SPJ1

You might be interested in
The electron beam in a TV picture tube carries 1015 electrons per second. As a design engineer, determine the voltage needed to
leonid [27]

Answer:

The voltage needed to accelerate the electron beam is 2.46 x 10^16 Volts

Explanation:

The rate of electron flow is given as:

q = 1015 electrons per second

The total current is given by:

Total Current = (Rate of electron flow)(Charge on one electron)

Total Current = I = (1015 electrons/s)(1.6 x 10^-19 C/electron)

I = 1.624 x 10^-16 A

Now, we know that electric power is given as:

Electric Power = Current x Voltage

P = IV

V = P/I

V = 4 W/1.624 X 10^-16 A

<u>V = 2.46 x 10^16 Volts</u>

6 0
3 years ago
Write a C program that will update a bank balance. A user cannot withdraw an amount ofmoney that is more than the current balanc
GarryVolchara [31]

Answer:

Explanation:

Sample output:

BANK ACCOUT PROGRAM!

----------------------------------

Enter the old balance: 1234.50

Enter the transactions now.

Enter an F for the transaction type when you are finished.

Transaction Type (D=deposit, W=withdrawal, F=finished): D

Amount: 568.34

Transaction Type (D=deposit, W=withdrawal, F=finished): W

Amount: 25.68

Transaction Type (D=deposit, W=withdrawal, F=finished): W

Amount: 167.40

Transaction Type (D=deposit, W=withdrawal, F=finished): F

Your ending balance is $1609.76

Program is ending

Code to copy:

// include the necessary header files.

#include<stdio.h>

// Definition of the function

float withdraw(float account_balance, float withdraw_amount)

{

// Calculate the balace amount.

float balance_amount = account_balance - withdraw_amount;

// Check whether the withdraw amount

// is greater than 0 or not.

if (withdraw_amount > 0 && balance_amount >= 0)

{

// Assign value.

account_balance = balance_amount;

}

// return account_balance

return account_balance;

}

// Definition of the function deposit.

float deposit(float account_balance, float deposit_amount)

{

// Check whether the deposit amount is greater than zero

if (deposit_amount > 0)

{

// Update account balance.

account_balance = account_balance + deposit_amount;

}

// return account balance.

return account_balance;

}

int main()

{

// Declare the variables.

float account_balance;

float deposit_amount;

float withdrawl_amount;

char input;

// display the statement on console.

printf("BANK ACCOUT PROGRAM!\n");

printf("----------------------------------\n");

// prompt the user to enter the old balance.

printf("Enter the old balance: ");

// Input balance

scanf("%f", &account_balance);

// Display the statement on console.

printf("Enter the transactions now.\n");

printf("Enter an F for the transaction type when you are finished.\n");

// Start the do while loop

do

{

// prompt the user to enter transaction type.

printf("Transaction Type (D=deposit, W=withdrawal, F=finished): ");

// Input type.

scanf(" %c", &input);

// Check if the input is D

if (input == 'D')

{

// Prompt the user to input amount.

printf("Amount: ");

// input amount.

scanf("%f", &deposit_amount);

// Call to the function.

account_balance=deposit(account_balance,deposit_amount);

}

// Check if the input is W

if (input == 'W')

{

printf("Amount: ");

scanf("%f", &withdrawl_amount);

// Call to the function.

account_balance = withdraw(account_balance,withdrawl_amount);

}

// Check if the input is F

if (input == 'F')

{

// Dispplay the amount.

printf("Your ending balance is $%.2f\n", account_balance);

printf("Program is ending\n");

}

// End the while loop

} while(input != 'F');

return 0;

}

the picture uploaded below shows the program screenshot.

cheers, i hope this helps.

5 0
3 years ago
How to design a solar panel<br>​
artcher [175]

Answer:

#1) Find out how much power you need

#2 Calculate the amount of batteries you need.

#3 Calculate the number of solar panels needed for your location and time of year.

#4 Select a solar charge controller.

#5 Select an inverter.

#6 Balance of system

Explanation: To design solar panel, consider the following steps

1.) Find the power consumption demands

The first step in designing a solar PV system is to find out the total power and energy consumption of all loads that need to be supplied by the solar PV system as follows:

Calculate total Watt-hours per day for each appliance used.

 Add the Watt-hours needed for all appliances together to get the total Watt-hours per day which must be delivered to the appliances.

Calculate total Watt-hours per day needed from the PV modules.

Multiply the total appliances Watt-hours per day times 1.3 (the energy lost in the system) to get the total Watt-hours per day which must be provided by the panels.

2. Size the PV modules

Different size of PV modules will produce different amount of power. To find out the sizing of PV module, the total peak watt produced needs. The peak watt (Wp) produced depends on size of the PV module and climate of site location. We have to consider panel generation factor which is different in each site location. For Thailand, the panel generation factor is 3.43. To determine the sizing of PV modules, calculate as follows:

2.1 Calculate the total Watt-peak rating needed for PV modules

Divide the total Watt-hours per day needed from the PV modules (from item 1.2) by 3.43 to get the total Watt-peak rating needed for the PV panels needed to operate the appliances.

Calculate the number of PV panels for the system

Divide the answer obtained in item 2.1 by the rated output Watt-peak of the PV modules available to you. Increase any fractional part of result to the next highest full number and that will be the 

number of PV modules required.

Result of the calculation is the minimum number of PV panels. If more PV modules are installed, the system will perform better and battery life will be improved. If fewer PV modules are used, the system may not work at all during cloudy periods and battery life will be shortened.

3. Inverter sizing

An inverter is used in the system where AC power output is needed. The input rating of the inverter should never be lower than the total watt of appliances. The inverter must have the same nominal voltage as your battery.

For stand-alone systems, the inverter must be large enough to handle the total amount of Watts you will be using at one time. The inverter size should be 25-30% bigger than total Watts of appliances. In case of appliance type is motor or compressor then inverter size should be minimum 3 times the capacity of those appliances and must be added to the inverter capacity to handle surge current during starting.

For grid tie systems or grid connected systems, the input rating of the inverter should be same as PV array rating to allow for safe and efficient operation.

4. Battery sizing

The battery type recommended for using in solar PV system is deep cycle battery. Deep cycle battery is specifically designed for to be discharged to low energy level and rapid recharged or cycle charged and discharged day after day for years. The battery should be large enough to store sufficient energy to operate the appliances at night and cloudy days. To find out the size of battery, calculate as follows:

     4.1 Calculate total Watt-hours per day used by appliances.

     4.2 Divide the total Watt-hours per day used by 0.85 for battery loss.

     4.3 Divide the answer obtained in item 4.2 by 0.6 for depth of discharge.

     4.4 Divide the answer obtained in item 4.3 by the nominal battery voltage.

     4.5 Multiply the answer obtained in item 4.4 with days of autonomy (the number of days that you need the system to operate when there is no power produced by PV panels) to get the required Ampere-hour capacity of deep-cycle battery.

Battery Capacity (Ah) = Total Watt-hours per day used by appliancesx Days of autonomy

(0.85 x 0.6 x nominal battery voltage)

5. Solar charge controller sizing

The solar charge controller is typically rated against Amperage and Voltage capacities. Select the solar charge controller to match the voltage of PV array and batteries and then identify which type of solar charge controller is right for your application. Make sure that solar charge controller has enough capacity to handle the current from PV array.

For the series charge controller type, the sizing of controller depends on the total PV input current which is delivered to the controller and also depends on PV panel configuration (series or parallel configuration).

According to standard practice, the sizing of solar charge controller is to take the short circuit current (Isc) of the PV array, and multiply it by 1.3

Solar charge controller rating = Total short circuit current of PV array x 1.3

5 0
3 years ago
If you are interested only in the temperature range of 20° to 40°C and the ADC has a 0 to 3V input range, design a signal condit
mario62 [17]

Explanation:

Temperature range → 0 to 80'c

respective voltage output → 0.2v to 0.5v

required temperature range 20'c to 40'c

Where T = 20'c respective voltage

\begin{aligned}v_{20} &=0.2+\frac{0.5-0.8}{80} \times 20 \\&=0.2+\frac{0.3}{80} \times 20 \\V_{20} &=0.275 v\end{aligned}

\begin{aligned}\text { when } T=40^{\circ} C & \text { . } \\v_{40} &=0.2+\frac{0.5-0.2}{80} \times 40 \\&=0.35 V\end{aligned}

Therefore, Sensor output changes from 0.275v to 0.35volts for the ADC the required i/p should cover the dynamic range of ADC (ie - 0v to 3v)

so we have to design a circuit which transfers input voltage 0.275volts - 0.35v to 0 - 3v

Therefore, the formula for the circuit will be

\begin{array}{l}v_{0}=\left(v_{i n}-0.275\right) G \\\sigma=\ldots \frac{3-0}{0.35-0.275}=3 / 0.075=40 \\v_{0}=\left(v_{i n}-0.275\right) 40\end{array}

The simplest circuit will be a op-amp

NOTE: Refer the figure attached

Vs is sensor output

Vr is the reference volt, Vr = 0.275v

\begin{aligned}v_{0}=& v_{s}-v_{v}\left(1+\frac{R_{2}}{R_{1}}\right) \\\Rightarrow & \frac{1+\frac{R_{2}}{R_{1}}}{2}=40 \\& \frac{R_{2}}{R_{1}}=39 \quad \Rightarrow\end{aligned}

choose R2, R1 such that it will maintain required  ratio

The output Vo can be connected to voltage buffer if you required better isolation.

3 0
3 years ago
When your fixing a car, what is the first thing you want to do?
Shtirlitz [24]

Answer:

Changing oil.

Explanation:

You need to regularly check and change your car’s oil to ensure smooth running of the vehicle and to prolong the lifespan of its engine.

6 0
3 years ago
Other questions:
  • An 80-L vessel contains 4 kg of refrigerant-134a at a pressure of 160kPa. Determine (a) the temperature, (b) the quality, (c) th
    11·1 answer
  • Tranquilizing drugs that inhibit sympathetic nervous system activity often effectively reduce people's subjective experience of
    8·1 answer
  • How does running an electric current through wire cause a magnetic field?
    6·1 answer
  • ). A 50 mm diameter cylinder is subjected to an axial compressive load of 80 kN. The cylinder is partially
    8·1 answer
  • 8.2.1: Function pass by reference: Transforming coordinates. Define a function CoordTransform() that transforms the function's f
    8·1 answer
  • A kite is an airfoil that uses the wind to produce a lift. Held in place by a string, a kite can remain aloft indefinitely. The
    9·1 answer
  • 1)A wheel is used to turn a valve stem on a water valve. If the wheel radius is 1 foot and the stem, (axle), radius is .5 inches
    10·1 answer
  • A 4-pole, 3-phase induction motor operates from a supply whose frequency is 60 Hz. calculate: 1- the speed at which the magnetic
    10·1 answer
  • Find all the words, Figure out my puzzle!
    14·2 answers
  • Technician A says when the brakes are applied in a vacuum booster, the vacuum control valve is closed. Technician B says the vac
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!