Answer:
-2, -1, 0, 1, 2
Explanation:
There are four types of quantum numbers;
1) Principal quantum number (n)
2) Azimuthal quantum number (l)
3) magnetic quantum number (ml)
4) Spin quantum number (s)
The azimuthal quantum number (l) describes the orbital angular momentum and shape of an orbital while the magnetic quantum number shows the projections of the orbital angular momentum along a specified axis. This implies that the magnetic quantum number shows the orientation of various orbitals along the Cartesian axes. The values of the magnetic quantum number ranges from -l to + l
For l= 2, the possible values of the magnetic quantum number are; -2, -1, 0, 1, 2
Answer:
The reaction is not spontaneous in the forward direction, but in the reverse direction.
Explanation:
<u>Step 1: </u>Data given
H2(g) + I2(g) ⇌ 2HI(g) ΔG° = 2.60 kJ/mol
Temperature = 25°C = 25+273 = 298 Kelvin
The initial pressures are:
pH2 = 3.10 atm
pI2 = 1.5 atm
pHI 1.75 atm
<u>Step 2</u>: Calculate ΔG
ΔG = ΔG° + RTln Q
with ΔG° = 2.60 kJ/mol
with R = 8.3145 J/K*mol
with T = 298 Kelvin
Q = the reaction quotient → has the same expression as equilibrium constant → in this case Kp = [p(HI)]²/ [p(H2)] [p(I2)]
with pH2 = 3.10 atm
pI2 = 1.5 atm
pHI 1.75 atm
Q = (3.10²)/(1.5*1.75)
Q = 3.661
ΔG = ΔG° + RTln Q
ΔG = 2600 J/mol + 8.3145 J/K*mol * 298 K * ln(3.661)
ΔG =5815.43 J/mol = 5.815 kJ/mol
To be spontaneous, ΔG should be <0.
ΔG >>0 so the reaction is not spontaneous in the forward direction, but in the reverse direction.
Answer:
Dude im not 100% sure but I think its b and c im sorry if im wrong its just that im not really sure which ones are.
Explanation:
You should download Socratic with a good app!