25.9 kJ/mol. (3 sig. fig. as in the heat capacity.)
<h3>Explanation</h3>
The process:
.
How many moles of this process?
Relative atomic mass from a modern periodic table:
- K: 39.098;
- N: 14.007;
- O: 15.999.
Molar mass of
:
.
Number of moles of the process = Number of moles of
dissolved:
.
What's the enthalpy change of this process?
for
. By convention, the enthalpy change
measures the energy change for each mole of a process.
.
The heat capacity is the least accurate number in these calculation. It comes with three significant figures. As a result, round the final result to three significant figures. However, make sure you keep at least one additional figure to minimize the risk of rounding errors during the calculation.
Answer: Selection proper
Explanation:
it's an anti-chance process, but subject to many constraints
Relative formula mass C₅H₁₁ = 71
Now divide the molar mass by the RFM = 142.32 / 71 = 2
Now C₍₅ₓ₂₎H₍₁₁ₓ₂) = C₁₀H₂₂
Hope that helps
Answer:
we know, at STP ( standard temperature and pressure).
we know, volume of 1 mole of gas = 22.4L
weight of 1 Litre of hydrogen gas = 0.09g
so, weight of 22.4 litres of hydrogen gas = 22.4 × 0.09 = 2.016g ≈ 2g = molecular weight of hydrogen gas.
similarly,
weight of 2L of a gas = 2.88gm
so, weight of 22.4 L of the gas = 2.88 × 22.4/2 = 2.88 × 11.2 = 32.256g
hence, molecular weight of the gas = 32.256g
vapor density = molecular weight/2
= 32.256/2 = 16.128g
hence, vapor density of the gas is 16.128g.
Explanation: