Answer: 2. Solution A attains a higher temperature.
Explanation: Specific heat simply means, that amount of heat which is when supplied to a unit mass of a substance will raise its temperature by 1°C.
In the given situation we have equal masses of two solutions A & B, out of which A has lower specific heat which means that a unit mass of solution A requires lesser energy to raise its temperature by 1°C than the solution B.
Since, the masses of both the solutions are same and equal heat is supplied to both, the proportional condition will follow.
<em>We have a formula for such condition,</em>
.....................................(1)
where:
= temperature difference
- c= specific heat of the body
<u>Proving mathematically:</u>
<em>According to the given conditions</em>
- we have equal masses of two solutions A & B, i.e.

- equal heat is supplied to both the solutions, i.e.

- specific heat of solution A,

- specific heat of solution B,

&
are the change in temperatures of the respective solutions.
Now, putting the above values


Which proves that solution A attains a higher temperature than solution B.
Answer:D
Explanation:according to the law of conservation of energy/momentum, when two bodies collides, their total momentum and energy before and after collision are equal. Given that the two bodies move with the same velocities after collision, means that the law has not been violated since momentum = mass x velocity (where mass is constant)
Your equation is:

An equation is balanced only if there are the same number of atoms of each element on both sides of the arrow - aka same number of atoms of each element in both reactants (left of the arrow) and products (right of the arrow).
It'll be easiest to tackle this by counting up the number of atoms of each element on the left and on the right and comparing those numbers. If there is a number in front of the entire compound, that means that number applies to all elements in the compound. If the number is a subscript (little number to the right of the element), that means that number only applies to the element that the subscript is attached to:
1) On the left, you have:

2) On the right, you have:

You can see that the number of oxygen and hydrogen atoms aren't equal on both the left (reactants) and the right (products), so the equation is unbalanced.
Your final answer is "T<span>he equation is
unbalanced because the number of hydrogen atoms and
oxygen is
not equal in the reactants and in the products."</span>