Answer:
t = 2.2 s
Explanation:
Given that,
Height of the roof, h = 24.15 m
The initial velocity of the pumpkin, u = 0
We need to find the time taken for the pumpkin to hit the ground. Let the time be t. Using second equation of kinematics to find it as follows :

Here, u = 0 and a = g

So, it will take 2.22 s for the pumpkin to hit the ground.
I could be wrong but I believe it’s 1/2
Answer:
Check the explanation
Explanation:
When we have an object in periodic motion, the amplitude will be the maximum displacement from equilibrium. Take for example, when there’s a back and forth movement of a pendulum through its equilibrium point (straight down), then swings to a highest distance away from the center. This distance will be represented as the amplitude, A. The full range of the pendulum has a magnitude of 2A.
position = amplitude x sine function(angular frequency x time + phase difference)
x = A sin(ωt + ϕ)
x = displacement (m)
A = amplitude (m)
ω = angular frequency (radians/s)
t = time (s)
ϕ = phase shift (radians)
Kindly check the attached image below to see the step by step explanation to the question above.
Answer:
Centripetal acceleration
Explanation:
- The centripetal acceleration is the motion inwards towards the center of a circular path.
- <em><u>Centripetal acceleration is given by; the square of the velocity, divided by the radius of the circular path.
</u></em>
ac = v²/r
Where; ac = acceleration, centripetal, m/s², v is the velocity, m/s and r is the radius, m
. . . 'protect' its domestic steel industry, by
increasing the price of imported steel.