Answer:
a) 2.85 kW
b) $ 432
c) $ 76.95
Explanation:
Average price of electricity = 1 $/40 MJ
Q = 20 kW
Heat energy production = 20.0 KJ/s
Coefficient of performance, K = 7
also
K=(QH)/Win
Now,
Coefficient of Performance, K = (QH)/Win = (QH)/P(in) = 20/P(in) = 7
where
P(in) is the input power
Thus,
P(in) = 20/7 = 2.85 kW
b) Cost = Energy consumed × charges
Cost = ($1/40000kWh) × (16kW × 300 × 3600s)
cost = $ 432
c) cost = (1$/40000kWh) × (2.85 kW × 200 × 3600s) = $76.95
The net force applied to the object equals the mass of the object multiplied by the amount of its acceleration." The net force acting on the soccer ball is equal to the mass of the soccer ball multiplied by its change in velocity each second (its acceleration).
Answer:
<h3>14.97m/s</h3>
Explanation:
Given
Initial velocity of the car u = 8m/s
Distance travelled by the rider S = 40m
Acceleration a = 2m/s²
Required
rider's velocity after the acceleration v
Using the equation of motion
v² = u²+2as
v² = 8²+2(2)(40)
v² = 64+160
v² = 224
v = √224
v = 14.97m/s
Hence the rider's velocity after the acceleration is 14.97m/s
Answer:
The voltage across the capacitor is 1.57 V.
Explanation:
Given that,
Number of turns = 10
Diameter = 1.0 cm
Resistance = 0.50 Ω
Capacitor = 1.0μ F
Magnetic field = 1.0 mT
We need to calculate the flux
Using formula of flux

Put the value into the formula


We need to calculate the induced emf
Using formula of induced emf

Put the value into the formula

Put the value of emf from ohm's law





We know that,


We need to calculate the voltage across the capacitor
Using formula of charge


Put the value into the formula


Hence, The voltage across the capacitor is 1.57 V.
To solve this problem it is necessary to apply the concepts related to the described wavelength through frequency and speed. Mathematically it can be expressed as:

Where,
Wavelength
f = Frequency
v = Velocity
Our values are given as,

Speed of sound
Keep in mind that we do not use the travel speed of the ambulance because we are in front of it. In case it approached or moved away we should use the concepts related to the Doppler effect:
Replacing we have,


Therefore the frequency that you hear if you are standing in from of the ambulance is 0.1214m