Answer:
196.2 J
Explanation:
PE = mass x accel. due to gravity x height
= 10 kg x 9.81 m/s² x 2 m
= 196.2 J
Answer:
a)
b) 
Explanation:
The complete question is written below:
An emu moving with constant acceleration covers the distance between two points that are 92 m apart in 6.5s. Its speed as it passes the second point is 14 m/s. What are (a) its speed at the first point and (b) its acceleration?
Since we are talking about constant acceleration, we can use the following equations:
(1)
(2)
Where:
is the distance between the two points
is the velocity of the emu at the first point
is the velocity of the emu at the second point
is the time it takes to the emu to cover the distance
is the emu's constant acceleration
Knowing this, let's begin with the answers:
<h2>a) Speed at the first point</h2>
In this situation wi will use equation (1):
(1)
Finding
:
(3)
(4)
(5)
<h2>
b) Emu's acceleration</h2>
Now we will substitute (5) in equation (2):
(6)
Finding
:
(7) This means the emu is decreasing its speed at a constant rate.
Creatine phosphate can supply the energy needs of a working muscle at a very high rate, but only for about 8–10 seconds.
Answer:
It will take both pumps 3.08 hours to fill the tank working together.
Explanation:
Pump A can fill the tank in 5 hours. Assuming that the pump gives out a steady flow of water, in one hour, pump A can fill 1/5th of the tank. Similarly, pump B in an hour, fills up 1/8th of the tank.
We must add up these two values, in order to find how much of the tank the two pumps can fill up together in one hour.
1/5 +1/8 =13/40
So 13/40 of the tank is filled in an hour. We need to find how many hours it will take for the entire tank to be filled. To do so, divide 40 by 13. This gives:
3.08 hours to fill up the tank.
Terminal velocity is the velocity at which a falling body experience
when its weight is equal to the force resistance of force opposing the
fall.
At terminal velocity the acceleration of the body is zero,
which implies that the value of the this velocity is a uniform.