Answer:
9 and 3 N
Explanation:
Forces in the same direction sum up to produce the resultant force;
One force subtract the other will give the resultant force when they are in opposite directions;
Lets say one direction is forwards and the opposite backwards;
We have one force, let's say force A, in the forwards direction and another force, force B, acting in the same (forwards) or opposite (backwards) direction;
If B is acting in the same direction, then the resultant force (in this case) will be as follows:
A + B = 12
If B is acting in the opposite direction, then the resultant force will be as follows:
A - B = 6
Summing the two equations will allow us to solve for A:
A + B + (A - B) = 12 + 6
2A = 18
A = 9
Substitute this into either of the above equations and we can solve for B:
(9) - B = 6
B = 9 - 6
B = 3
Answer:
In odd nuclei, the left out proton or neutron will contribute to the spin of the nucleus.
Explanation:
The meaning of odd nuclei is atomic mass is odd.
A=odd number.
A=Z+n
Here, Z is proton either it will odd or n will odd which is neutron.
Now according to the shell model the left out proton or neutron will contribute to the spin and parity.
For example,
Take the case of isotope of nitrogen-15.
Here Z is 7, and n is 8 will not contribute in spin.
Now, for Z=7.

Here,

and, L=1.
Fort parity,

Put the value of L.
Parity will be -1.
Now, spin will be
.
Answer:
481.76 J/mol
133.33 K
Explanation:
= Avogadro's number = 
Change in enthalpy is given by

Entropy is given by

Latent heat of fusion is given by

The latent heat of fusion is 481.76 J/mol
Melting point is given by

Melting occurs at 133.33 K
Answer:
See Explanation
Explanation:
The relationship between angle of an incline and the acceleration of an object moving down the incline.
As the angle of an incline increases, so does the acceleration of the body moving down the incline increases, resolving the force acting on an inclined object
Parallel force = mgsin, perpendicular = mgcosΘ
With th weigh component 'mg' of the parallel force accounting for the acceleration of the body down the incline.
mgsinΘ = ma
Fnet = ma
B.) From Fnet = ma
Fnet = ma
a = Fnet / m
Where Fnet = Net force = mgsinΘ, a = acceleration