1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ExtremeBDS [4]
3 years ago
11

What is 6=x over 8 for fractions

Mathematics
2 answers:
boyakko [2]3 years ago
6 0

Answer:

48

<h3><em><u>Could I please have BRAINLIEST.</u></em></h3>
9966 [12]3 years ago
4 0

Answer:

x = \frac{3}{4}

You might be interested in
Help me please my math didn’t teach me this!
Airida [17]
Sorry I don’t know it right now but I can help you with some thing else
8 0
3 years ago
Help me with this algebra problem. Thank you :)
nata0808 [166]
To solve this problem you must apply the proccedure shown below:

 1. You must make a system of equations, as below:

 2. Let's call:

 x: the number of first class tickets bought.
 y: the number of coach tickets bought.

 3. Then, you have:

 x+y=7 (First equation)
 970x+370y=3790 (Second equation)

 x=7-y

 4. By substitution, you have:

 970x+370y=3790
 970(7-y)+370=3790
 y=5

 x=7-y
 x=7-5
 x=2

 Therefore, the answer is:

 - Number of first class tickets bought=2

 - Number of coach tickets bought=5
 
5 0
3 years ago
23 times 67 estimated
Llana [10]
Estimate : 23 × 67

20 (lower down, lower than 5...the last digit) × 70 (Higher, higher than 5)

=20×70
=1400

The estimated value will be 1400
8 0
3 years ago
Find thd <img src="https://tex.z-dn.net/?f=%5Cfrac%7Bdy%7D%7Bdx%7D" id="TexFormula1" title="\frac{dy}{dx}" alt="\frac{dy}{dx}" a
NARA [144]

x^3y^2+\sin(x\ln y)+e^{xy}=0

Differentiate both sides, treating y as a function of x. Let's take it one term at a time.

Power, product and chain rules:

\dfrac{\mathrm d(x^3y^2)}{\mathrm dx}=\dfrac{\mathrm d(x^3)}{\mathrm dx}y^2+x^3\dfrac{\mathrm d(y^2)}{\mathrm dx}

=3x^2y^2+x^3(2y)\dfrac{\mathrm dy}{\mathrm dx}

=3x^2y^2+6x^3y\dfrac{\mathrm dy}{\mathrm dx}

Product and chain rules:

\dfrac{\mathrm d(\sin(x\ln y)}{\mathrm dx}=\cos(x\ln y)\dfrac{\mathrm d(x\ln y)}{\mathrm dx}

=\cos(x\ln y)\left(\dfrac{\mathrm d(x)}{\mathrm dx}\ln y+x\dfrac{\mathrm d(\ln y)}{\mathrm dx}\right)

=\cos(x\ln y)\left(\ln y+\dfrac1y\dfrac{\mathrm dy}{\mathrm dx}\right)

=\cos(x\ln y)\ln y+\dfrac{\cos(x\ln y)}y\dfrac{\mathrm dy}{\mathrm dx}

Product and chain rules:

\dfrac{\mathrm d(e^{xy})}{\mathrm dx}=e^{xy}\dfrac{\mathrm d(xy)}{\mathrm dx}

=e^{xy}\left(\dfrac{\mathrm d(x)}{\mathrm dx}y+x\dfrac{\mathrm d(y)}{\mathrm dx}\right)

=e^{xy}\left(y+x\dfrac{\mathrm dy}{\mathrm dx}\right)

=ye^{xy}+xe^{xy}\dfrac{\mathrm dy}{\mathrm dx}

The derivative of 0 is, of course, 0. So we have, upon differentiating everything,

3x^2y^2+6x^3y\dfrac{\mathrm dy}{\mathrm dx}+\cos(x\ln y)\ln y+\dfrac{\cos(x\ln y)}y\dfrac{\mathrm dy}{\mathrm dx}+ye^{xy}+xe^{xy}\dfrac{\mathrm dy}{\mathrm dx}=0

Isolate the derivative, and solve for it:

\left(6x^3y+\dfrac{\cos(x\ln y)}y+xe^{xy}\right)\dfrac{\mathrm dy}{\mathrm dx}=-\left(3x^2y^2+\cos(x\ln y)\ln y-ye^{xy}\right)

\dfrac{\mathrm dy}{\mathrm dx}=-\dfrac{3x^2y^2+\cos(x\ln y)\ln y-ye^{xy}}{6x^3y+\frac{\cos(x\ln y)}y+xe^{xy}}

(See comment below; all the 6s should be 2s)

We can simplify this a bit by multiplying the numerator and denominator by y to get rid of that fraction in the denominator.

\dfrac{\mathrm dy}{\mathrm dx}=-\dfrac{3x^2y^3+y\cos(x\ln y)\ln y-y^2e^{xy}}{6x^3y^2+\cos(x\ln y)+xye^{xy}}

3 0
3 years ago
Answer Questions and show all of your work.
Dmitriy789 [7]

Answer:

X= 35

Z=90

Step-by-step explanation:

sorry I don’t know how else to help

6 0
2 years ago
Other questions:
  • The Sun illuminates ________________________ of the Moon at all times.
    11·2 answers
  • What is the positive solution to the equation 2x^2+25=73
    8·1 answer
  • If x = -3, then x2-7x + 10 equals
    8·2 answers
  • 8.96 is what percent of 112
    11·2 answers
  • M=-8r^2+11r-6<br> t=-7r^2-9r+14<br> m+t=
    8·1 answer
  • Joe drove 80 kilometers per hour for 4 hours. How far did he go?
    10·2 answers
  • IT’S TIMED NEED HELP ASAP! If you don’t know please don’t answer
    9·2 answers
  • I GIVEEEEE BRAINLILSET
    9·2 answers
  • Os there one solution, no solutions, or infinate solutions to 4(4x-3) = 8(2x-2)+4
    8·1 answer
  • Find the value of x if the angles below are vertical.
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!