Answer:
The velocity of the camera is 33.11 m/s.
Explanation:
Given that,
Speed = 10.8 m/s
Altitude = 50 m
Suppose determine the velocity of the camera just before it hits the ground?
We need to calculate the velocity of the camera
Using equation of motion

Where, v = final velocity of camera
u = initial speed of camera
s = distance
Put the value into the formula



The direction will be downward so it is the negative velocity.
Hence, The velocity of the camera is 33.11 m/s.
Answer:
Vaporation
Explanation:
In the vaporization or boiling, the passage of particles from the liquid state to the gaseous state occurs completely
Answer:
The answer is B. Without a college education, workers will actually lose money in the long run.
Explanation:
Just got it right on the assignment
Answer:
Explanation:
First of all, well calculate the spring constant k
K = 2Ei/x^2
Where Ei = initial work required
x = initial stretch length
k = 2×7/0.017^2 = 48443J/m^2
Now work done in stretching it to 5.3cm (1.7 + 3.6) or 0.053m
EF = kx^2/2
48443 × 0.053^2/2 = 68J
Work done in stretching additional 3.6cm is equal to
68J-7J = 61J
Answer:
288W.
Explanation:
P = IV = V^2 / R = (120)^2 / 50 = 288W.