Answer:force equals to rate of change of momentum
Explanation:
F=force
t=time
m=mass
v=final velocity
u=initial velocity
(mv-mu)/t=rate of change of momentum
Force=rate of change of momentum
F=(mv-mu)/t
Answer:48 V
Explanation:
Given
Three charged particle with charge



Electric Potential is given by

Distance of
from 



similarly 




Potential at
is

![V_{net}=k[\frac{q_1}{d_1}+\frac{q_2}{d_2}+\frac{q_3}{d_3}]](https://tex.z-dn.net/?f=V_%7Bnet%7D%3Dk%5B%5Cfrac%7Bq_1%7D%7Bd_1%7D%2B%5Cfrac%7Bq_2%7D%7Bd_2%7D%2B%5Cfrac%7Bq_3%7D%7Bd_3%7D%5D)
![V_{net}=9\times 10^9[\frac{50}{10}-\frac{80}{12}+\frac{70}{10}]\times 10^{-9}](https://tex.z-dn.net/?f=V_%7Bnet%7D%3D9%5Ctimes%2010%5E9%5B%5Cfrac%7B50%7D%7B10%7D-%5Cfrac%7B80%7D%7B12%7D%2B%5Cfrac%7B70%7D%7B10%7D%5D%5Ctimes%2010%5E%7B-9%7D)


So the equation for angular velocity is
Omega = 2(3.14)/T
Where T is the total period in which the cylinder completes one revolution.
In order to find T, the tangential velocity is
V = 2(3.14)r/T
When calculated, I got V = 3.14
When you enter that into the angular velocity equation, you should get 2m/s
I'm not completely sure, but I think it's 3.4 newtons. I hope you get it correct.