First solve the potential energy of the biker. using the fomula:
PE = mgh
where m is the mass of the object
g is the acceleration due to gravity ( 9.81 m/s2)
h is the height
PE = 96 kg ( 1120 m ) ( 9.81 m/s2)
PE = 1054771.2 J
then power = Work / time
P = 1054771.2 J / ( 120 min ) ( 60 s / 1 min)
P = 146.5 W
It would be easier to answer your question if you attached options. Anyway I remember that the right answer to that question is:<span> marissa, because she has cheered for the team all season long</span>
Large amounts of water do have a big impact on the weather: indeed, it takes less energy to warm/cool land than water.
Therefore, places near large amounts of water tend to have smaller differences in temperature between summer and winter than places far from waters.
Hence, during winter in Puerto Rico, alongside the coast, the temperature will be higher than in the innermost parts of the island.
Answer:
271.862 N/m
Explanation:
From Hook's Law,
mgh = 1/2ke²............... Equation 1
Where
m = mass of the ball, g = acceleration due to gravity, k = spring constant, e = extension, h = height fro which the ball was dropped.
Making k the subject of the equation,
k =2mgh/k²....................... Equation 2
Note: The potential energy of the ball is equal to the elastic potential energy of the spring.
Given: m = 60.3 g = 0.0603 kg, g = 9.8 m/s², e = 4.68317 cm = 0.0468317 m, h = 53.7 cm = 0.537 m
Substitute into equation 2
k = 2(0.0603)(9.8)(0.537)/0.048317²
k = 0.6346696/0.0023345
k = 271.862 N/m