If you add energy to water , you increase the temperature of water. This is why when you add so much heat to water, it will boil and become gas, as gases have more energy than liquids do, and liquids have more energy than solids do.
Answer:
D. because water and mud behaved in a similar way in the past as they do today
Explanation:
One of the fundamental theories in the field of earth science is the theory of uniformitarianism.
Uniformitarianism was proposed by James Hutton in the 18th century in Scotland. The theory states that "geologic processes occurring today have occurred in times past and that the present is the key to past".
The simple meaning of the theory is that, the processes on earth today such as weathering, erosion, e.t.c have also occurred in times past. Those processes still occur today and an understanding of such events today will help us have a better insight into the past.
Therefore, ripple marks just as they form today from action of mud and water would be formed in a similar way in the past.
Answer: There was a lower concentration of salt in the water than in the cells.
Explanation:
Osmosis is a process in which the solvent flow from a solution of low concentration to a solution of high concentration through a semi-permeable membrane.
When the red blood cells are put in water that contained salt and the red blood cells burst after some time.
This means the solvent has moved from outside to inside the cell and this is possible only when the concentration of solute is high inside the cell than outside. That means the solution has low concentration of solute as compared to the cell and was a hypotonic solution.
<h3>
Answer:</h3>
0.387 J/g°C
<h3>
Explanation:</h3>
- To calculate the amount of heat absorbed or released by a substance we need to know its mass, change in temperature and its specific heat capacity.
- Then to get quantity of heat absorbed or lost we multiply mass by specific heat capacity and change in temperature.
- That is, Q = mcΔT
in our question we are given;
Mass of copper, m as 95.4 g
Initial temperature = 25 °C
Final temperature = 48 °C
Thus, change in temperature, ΔT = 23°C
Quantity of heat absorbed, Q as 849 J
We are required to calculate the specific heat capacity of copper
Rearranging the formula we get
c = Q ÷ mΔT
Therefore,
Specific heat capacity, c = 849 J ÷ (95.4 g × 23°C)
= 0.3869 J/g°C
= 0.387 J/g°C
Therefore, the specific heat capacity of copper is 0.387 J/g°C