If the object's <em>velocity is constant</em> ... (it's speed isn't changing AND it's moving in a straight line) ... then the net force on the object is zero.<em> (D)</em>
Either there are no forces at all acting on the object, OR there are forces on it but they're 'balanced' ... when you add up all of their sizes and directions, they just exactly cancel each other out, and they have the SAME EFFECT on the object as if there were no forces at all.
Answer:
The heat causes the molecules on rubbing surfaces to move faster and have more energy.
Answer: potential energy but no kinetic energy
Explanation:
Since the rock is stationary, velocity is zero, therefore no kinetic energy,but there's potential energy because the rock is at rest,
Answer:
Explanation:
The tidal current flows to the east at 2.0 m/s and the speed of the kayaker is 3.0 m/s.
Let Vector
is the tidal current velocity as shown in the diagram.
In order to travel straight across the harbor, the vector addition of both the velocities (i.e the resultant velocity,
must be in the north direction.
Let
is the speed of the kayaker having angle \theta measured north of east as shown in the figure.
For the resultant velocity in the north direction, the tail of the vector
and head of the vector
must lie on the north-south line.
Now, for this condition, from the triangle OAB




Hence, the kayaker must paddle in the direction of
in the north of east direction.
The correct answer is
<span>C) Q
In fact, the symbol Q represents the heat, which is the form of energy transferred from a hot object to a cooler object. Heat generally refers to the energy related to the motion of the particles, and it is related to the temperature of an object: the higher the temperature of an object, the faster the particles of the object move, and so the object can transfer more energy (as heat) to other objects with lower temperature.</span>