An object is moving with constant velocity downwards on a frictionless inclined plane that makes an angle of θ with the horizontal.
1. Which direction does the force of gravity act on the object?
2. Which direction does the normal force act on the object?
Which force is responsible for the object moving down the incline?
Answer:
The answer is below
Explanation:
1. When an object is moving with a constant velocity, the direction the force of gravity act on the object is DIRECTLY DOWN.
2. When an object is moving with a constant velocity, the direction the normal force act on the object "perpendicular to the surface of the plane."
3. When an object is moving with a constant velocity, the force that is responsible for the object moving down the incline is "the component of the gravitational force parallel to the surface of the inclined plane."
Answer:
Angle turn pulley is 113 rad
Explanation:
given data
angular speed w = 12.5 rad/s
angular acceleration a 3.41 rad/s²
time t = 5.26 s
to find out
what angle does the pulley turn
solution
we get here angle by this equation that is here
angle turn = w × t + 0.5 × a × t² ......................1
put here value we get
angle turn = w × t + 0.5 × a × t²
angle turn = 12.5 × 5.26 + 0.5 × 3.41 × 5.26²
Angle turn = 65.75 + 47.17
Angle turn = 112.92 rad = 113 rad
Answer:

Explanation:
Given that,
The current in the loop, I = 2 A
The radius of the loop, r = 0.4 m
We need to find the magnetic field at a distance 0.09 m along the axis and above the center of the loop. The formula for the magnetic field at some distance is given as follows :

Put all the values,

So, the required magnetic field is equal to
.
The magnet needs to be held above the coils of wires
Given:
u = 10⁵ m/s, the entrance velocity
v = 2.5 x 10⁶ m/s, the exit velocity
s = 1.6 cm = 0.016 m, distance traveled
Let a = the acceleration.
Then
u² + 2as = v²
(10⁵ m/s)² + 2*(a m/s²)*(0.016 m) = (2.5 x 10⁶ m/s)²
0.032a = 6.25 x 10¹² - 10¹⁰ = 6.24 x 10¹²
a = 1.95 x 10¹⁴ m/s²
Answer: 1.95 x 10¹⁴ m/s²