The greatest aqueous freezing point is (D) 0.10 KCI
Answer:
PCl3 + 3H2O → HPO(OH)2 + 3HCl. Phosphorus(III) chloride react with water to produce phosphorous acid and hydrogen chloride.
Explanation:
Answer:
15.0 µm
Step-by-step explanation:
Density = mass/volume
D = m/V Multiply each side by V
DV = m Divide each side by D
V = m/D
Data:
m = 1.091 g
D = 7.28 g/cm³
l = 10.0 cm
w = 10.0 cm
Calculation:
<em>(a) Volume of foil
</em>
V = 1.091 g × (1 cm³/7.28 g)
= 0.1499 cm³
(b) <em>Thickness of foil
</em>
The foil is a rectangular solid.
V = lwh Divide each side by lw
h = V/(lw)
= 0.1499/(10 × 10)
= 1.50 × 10⁻³ cm Convert to millimetres
= 0.015 mm Convert to micrometres
= 15.0 µm
The foil is 15.0 µm thick.
Answer:
Option (d) is correct
N³⁻ > F⁻ > Mg²⁺ > Si⁴⁺
Explanation:
Total electrons for all the species = 10
So these are <u>iso electronic</u> with each other.
We know
Ionic radii ∝ 
- Si⁴⁺ has 14 protons and 10 electrons
- Mg²⁺ has 12 protons and 10 electrons
- N³⁻ has 7 protons and 10 electrons
- F⁻ has 9 protons and 10 electrons
- Iso electronic species with greatest number of protons have small size and vice versa.
- So Si⁺⁴ have smallest size and N³⁻ have largest in size
The correct answer for the question that is being presented above is this one: "<span>16.728 g."</span>
Given that
ΔHsolid = -5.66 kJ/mol.
This means that 5.66 kJ of heat is released when 1 mole of NH3 solidifies
When 5.57 kJ of heat is released
amount of NH3 solidifies = 5.57/5.66 = 0.984 moles
<span>molar mass of NH3 = 17 g/mole </span>
<span>1 mole of NH3 = 17 g </span>
So, 0.984 moles of NH3 = 17 X 0.984 = 16.728 g