Answer:
The wavelength of the waves created in the swimming pool is 0.4 m
Explanation:
Given;
frequency of the wave, f = 2 Hz
velocity of the wave, v = 0.8 m/s
The wavelength of the wave is given by;
λ = v / f
where;
λ is the wavelength
f is the frequency
v is the wavelength
λ = 0.8 / 2
λ = 0.4 m
Therefore, the wavelength of the waves created in the swimming pool is 0.4 m
Answer:
A. Kinetic energy is converted to electric potential energy, and the proton moves more slowly.
Explanation:
When a moving proton is brought close to a stationary one, the kinetic energy of the moving one is converted to electric potential and the proton moves more slowly.
Kinetic energy is the energy due to the motion of a body. A moving proton will possess this form of energy.
Two protons according to coulombs law will repel each other with an electrostatic force because they both have similar charges. This will increase their electric potential energy of both of them.
Potential energy is the energy at rest of a body. As it increases, the motion of a body will be slower and it will tend towards being stationary.
Answer:
266 g or 0.266 kg
Explanation:
The formula for specific heat capacity is given as,
Q = cm(t₂-t₁) ..................... Equation 1
Where Q = Heat Energy, c = specific heat capacity of Aluminum, m = mass of the aluminum fins, t₁ = initial temperature, t₂ = final temperature.
make m the subject of the equation,
m = Q/c(t₂-t₁)................... Equation 2
Given : Q = 2571 J, c = 0.897 J/g.°C, t₁ = 15.73 °C, t₂ = 26.50 °C.
Substitute into equation 2
m = 2571/[0.897×(26.5-15.73)]
m = 2571/9.661
m = 266 g or 0.266 kg
Hence the mass of the Aluminum fins = 266 g or 0.266 kg
I think the answer is potential