Answers:
5)
6)
7)
8) more than Venus force of gravity on Pluto
Explanation:
According to Newton's law of Universal Gravitation, the force exerted between two bodies of masses and and separated by a distance is equal to the product of their masses and inversely proportional to the square of the distance:
(1)
Where is the Gravitational Constant
This is the equation we will use to solve each question in this problem.
<h3>5) Gravitational force between Earth and Moon</h3>
In this case we have:
is the gravitational force between Earth and Moon
is the mass of the Earth
is the mass of the Moon
is the distance between Earth and Moon
Solving:
(2)
(3)
<h3>6) Gravitational force between Jupiter and Venus</h3>
Assuming for a moment that the planets are perfectly aligned and all are in the same orbital period, we can make a rough estimation of the distance between Jupiter and Venus, knowing the distance of each to the Sun:
distance between Sun and Jupiter - distance between Sun and Venus=distance between Jupiter and Venus= (4)
(5)
Using this value in the Law of Universal Gravitation equation:
(6)
(7)
<h3>7) Gravitational force between Saturn and Mars</h3>
Using the same assumption we made in the prior question:
distance between Sun and Saturn - distance between Sun and Mars=distance between Saturn and Mars= (8)
(9)
Using this value in the Law of Universal Gravitation equation:
(10)
(11)
<h3>8) How much more is earths force of gravity on Pluto than Venus force of gravity on Pluto?</h3>
Firstly, we need to find and then find in order to find the difference.
<u>For :</u>
is the mass of the Earth
is the mass of Pluto
is the distance between Earth and Pluto
(12)
(13) Force between Earth and Pluto
<u></u>
<u>For :</u>
is the mass of Venus
is the mass of Pluto
is the distance between Venus and Pluto
(14)
(15) Force between Venus and Pluto
Calculating the difference:
Finally:
(16)
Hence:
Earths force of gravity on Pluto is than Venus force of gravity on Pluto.