Condensing because when particles vibrate they condense.
Answer:
Explanation:
We shall apply Ampere's circuital law to find out magnetic field . It is given as follows.
∫B.dl = μ₀ I , B is magnetic field , I is current , μ₀ is permeability .
Radius of the wire r = 1.2 x 10⁻³ m
magnetic field B will be circular in shape around the wire. If B is uniform
∫B.dl = B x 2πr
B x 2πr = μ₀ I
B = μ₀ I / 2πr
= 4π x 10⁻⁷ x 37 /2πx1.2 x 10⁻³
= 10⁻⁷ x 2x37 / 1.2 x 10⁻³
= 61.67 x 10⁻⁴ T
= 62 x 10⁻⁴ T
Answer:
30 minutes
Explanation:
Energy per time is constant, so:
E₁ / t₁ = E₂ / t₂
m₁C₁ΔT₁ / t₁ = m₂C₂ΔT₂ / t₂
(1 kg) C (70°C − 25°C) / 15 min = (1.5 kg) C (80°C − 20°C) / t
(1 kg) (45°C) / 15 min = (1.5 kg) (60°C) / t
3/min = 90 / t
t = 30 min
Horizontal component of force = 100cos(36)= 80.9 N
Answer:
W = 34.64 ft-lbs
Explanation:
given,
Horizontal force = 4 lb
distance of push, d = 10 ft
angle of ramp, θ = 30°
Work done on the box = ?
We know,
W = F.d cos θ
W = 4 x 10 x cos 30°
W = 40 x 0.8660
W = 34.64 ft-lbs
Hence, work done on the box is equal to W = 34.64 ft-lbs