Answer:
The actual angle is 30°
Explanation:
<h2>Equation of projectile:</h2><h2>y axis:</h2>

the velocity is Zero when the projectile reach in the maximum altitude:

When the time is vo/g the projectile are in the middle of the range.
<h2>x axis:</h2>

R=Range


**sin(2A)=2sin(A)cos(A)
<h2>The maximum range occurs when A=45°
(because sin(90°)=1)</h2><h2>The actual range R'=(2/√3)R:</h2>
Let B the actual angle of projectile

2B=60°
B=30°
Answer:
Gamma radiation or Cathode rays
Explanation:
by striking incident gamma or cathode rays onto the solid when placed on a photographic plate
Answer:
Its initial position was 471 m.
Explanation:
We have,
Final position of the object is 327 m
Displacement of the object is -144 m
It is required to find its initial position. The difference of final and initial position is equal to the displacement of the object. So,

So, its initial position was 471 m.
Answer:
The speed of the boat is equal to 13.50 ft/s.
Explanation:
given,
1 nautical mile = 6076 ft
1 knot = 1 nautical mile /hour
1 knot = 6076 ft/hr
speed of boat = 8 knots
8 knots = 8 nautical mile /hour
=
= 13.50 ft/s
The speed of the boat is equal to 13.50 ft/s.
The magnitude of the displacement of the car from the starting point to halfway around the track is 256 m.
Answer:
Explanation:
Since the race track is a circular track, the distance for one lap will be equal to the circumference of the circular track. And the circumference will be equal to the circumference of the circle.
Since the radius of the track is given as 200 m, then the circumference of the circular track will be
Circumference = 2πr = 2 × 3.14 × 200
So the circumference of the circular track = 1256 m.
So the starting point or position of the track is considered as zero and if the car has traveled half way means, the car has covered half of the circumference of the track.
As the circumference = 1256 m, then half of the circumference of the circle = 1256/2 = 256 m.
So the displacement is the measure of difference between the final position and initial position. As here the initial position is zero and the final position is the halfway around the track which is equal to 256 m.
Then Displacement = Final-Initial = 256-0= 256 m.
So the magnitude of the displacement of the car from the starting point to halfway around the track is 256 m.