To solve this problem it is necessary to apply the concepts related to Dopler's Law. Dopler describes the change in frequency of a wave in relation to that of an observer who is in motion relative to the Source of the Wave.
It can be described as
c = Propagation speed of waves in the medium
= Speed of the receiver relative to the medium
= Speed of the source relative to the medium
Frequency emited by the source
The sign depends on whether the receiver or the source approach or move away from each other.
Our values are given by,
Velocity of car
velocity of motor
Velocity of sound
Frequency emited by the source
Replacing we have that
Therefore the frequency that hear the motorcyclist is 601.7Hz
Answer:
Explanation:
The tidal current flows to the east at 2.0 m/s and the speed of the kayaker is 3.0 m/s.
Let Vector is the tidal current velocity as shown in the diagram.
In order to travel straight across the harbor, the vector addition of both the velocities (i.e the resultant velocity, must be in the north direction.
Let is the speed of the kayaker having angle \theta measured north of east as shown in the figure.
For the resultant velocity in the north direction, the tail of the vector and head of the vector must lie on the north-south line.
Now, for this condition, from the triangle OAB
Hence, the kayaker must paddle in the direction of in the north of east direction.
A bicyclist can ride their bicycle still on the road. Bicycle riders be able to take the public ways which has the similar rights and accountability as motorists and are subject to the same guidelines and protocols. The law says that individuals who ride bikes should ride as nearby to the right side of the road as likely excluding under the following conditions: when passing, preparing for a left go, evading risks, if the lane is too constricted to share, or if oncoming a place where a right turn is approved. In a road which has a bike lane the bicyclists roving slower than road traffic must custom the bike way excluding when creating a left turn, passing, evading hazardous settings, or impending a place where a right turn is approved.
Answer:
The answer to your question is
Explanation:
Data
mass = 0.5kg
T1 = 35
T2 = ?
Q = - 6.3 x 10⁴ J = - 63000 J
Cp = 4184 J / kg°C
Formula
Q = mCp(T2 - T1)
T2 = T1 + Q/mCp
Substitution
T2 = 35 - 63000/(0.5 x 4184)
T2 = 35 - 63000/2092
T2 = 35 - 30.1
T2 = 4.9 °C
A.900 watts That would be your correct answer