<h3>It takes 60 seconds to do the work</h3>
<em><u>Solution:</u></em>
Given that,
Force = 100 newtons
Distance = 15 meters
Power = 25 watts
To find: time it takes to do the work
<em><u>Find the work done:</u></em>

<em><u>Find the time taken</u></em>

Thus it takes 60 seconds to do the work
Answer:
Electric Field = E = 36.848 N/C
Explanation:
In accordance with Columb's law
E = k Q1 Q2 / r.r = 8.99 x 10^9 x 5.0 x 10^-6 x 5.8 x 10^-6 / 0.084 x 0.084
= 36948.6961 x 10^-3 = 36.848 N/C
At the highest point: kinetic energy is 0 due to the speed is 0
So the total mechanical energy is 20
Assume no frictions present, then the mechanical energy is conserved
So at the lowest point, kinetic energy = mechanical energy - potential energy
Answer will be 20 - 0.5 = 19.5 J
"Midnight" means looking away from the Sun. But in 6 months from April to October the earth goes halfway around the Sun. So midnight in April and midnight in October are exactly opposite directions.
Answer:
The kinetic energy of the particle as it moves through point B is 7.9 J.
Explanation:
The kinetic energy of the particle is:
<u>Where</u>:
K: is the kinetic energy
: is the potential energy
q: is the particle's charge = 0.8 mC
ΔV: is the electric potential = 1.5 kV
Now, the kinetic energy of the particle as it moves through point B is:


Therefore, the kinetic energy of the particle as it moves through point B is 7.9 J.
I hope it helps you!