1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Feliz [49]
2 years ago
14

the maximum range of a projectile is 2÷√3 times its actual range what is the angle of the projection for the actual range​

Physics
1 answer:
Murrr4er [49]2 years ago
7 0

Answer:

The actual angle is 30°

Explanation:

<h2>Equation of projectile:</h2><h2>y axis:</h2>

v_y(t)=vo*sin(A)-g*t

the velocity is Zero when the projectile reach in the maximum altitude:

0=vo-gt\\t=\frac{vo}{g}

When the time is vo/g the projectile are in the middle of the range.

<h2>x axis:</h2>

d_x(t)=vo*cos(A)*t\\

R=Range

R=d_x(t=2*\frac{vo}{g})

R=vo*cos(A)*2\frac{vo}{g} \\\\R=\frac{(vo)^{2}*2* sin(A)cos(A)}{g} \\\\R=\frac{(vo)^{2} sin(2A)}{g}

**sin(2A)=2sin(A)cos(A)

<h2>The maximum range occurs when A=45°(because sin(90°)=1)</h2><h2>The actual range R'=(2/√3)R:</h2>

Let B the actual angle of projectile

\frac{vo^{2} }{g} =(\frac{2}{\sqrt{3} }) \frac{vo^{2} *sin(2B)}{g}\\\\1= \frac{2 }{\sqrt{3}} *sin(2B)\\\\sin(2B)=\frac{\sqrt{3}}{2}\\\\

2B=60°

B=30°

You might be interested in
The horizontal beam in Fig. E11.14 weighs 190 N, and its center of gravity is at its center. Find (a) the tension in the cable a
grandymaker [24]

Answer:

(a). The tension in the cable is 658.33 N.

(b). The horizontal components of the force exerted on the beam at the wall is 526.66 N.

(c). The vertical components of the force exerted on the beam at the wall is 95.002 N.

Explanation:

Given that,

Weight of beam= 190 N

Here, The center of gravity is at its center

According to figure,

The angle is

\sin\theta=\dfrac{3}{5}

The horizontal component is

T_{x}=T\cos\theta

The vertical component is

T_{y}=T\sin\theta

(a). We need to calculate the tension in the cable

Using formula of net torque acting on the pivot

\sum\tau=F_{b}\times r+F_{w}\times r'-T\sin \theta\times r'

Put the value into the formula

0=190\times2+300\times 4-T\sin\theta\times 4

T\sin\theta\times 4=380+1200

T=\dfrac{1580\times5}{3\times 4}

T=658.33\ N

(b). We need to calculate the horizontal components of the force exerted on the beam at the wall

Using formula of horizontal component

F_{x}=T\cos\theta

Put the value into the formula

F_{x}=658.33\times\dfrac{4}{5}

F_{x}=526.66\ N

(c). We need to calculate the vertical components of the force exerted on the beam at the wall

Using formula of vertical component

F_{y}=F_{b}+F_{w}-T\sin\theta

Put the value into the formula

F_{y}=190+300-658.33\times\dfrac{3}{5}

F_{y}=95.002\ N

Hence, (a). The tension in the cable is 658.33 N.

(b). The horizontal components of the force exerted on the beam at the wall is 526.66 N.

(c). The vertical components of the force exerted on the beam at the wall is 95.002 N.

3 0
3 years ago
Applying the Law of Conservation of Energy. If a car was released down the track from a height what happens to the potential ene
erastova [34]

Answer:

According to the law of conservation of energy, energy cannot be created or destroyed,  although it can be changed from one form to another.    KE + PE = constant. A simple example involves a stationary car at the top of a hill.  As the car coasts down the hill, it moves faster and so it’s kinetic energy increases and it’s potential energy decreases.  On the way back up the hill, the car converts kinetic energy to potential energy.  In the absence of friction, the car should end up at the same height as it started.

This law had to be combined with the law of conservation of mass when it was determined that mass can be inter-converted with energy.

One can also imagine the energy transformation in a pendulum.  When the ball is at the top of its swing, all of the pendulum’s energy is potential energy.   When the ball is at the bottom of its swing, all of the pendulum’s energy is kinetic energy.   The total energy of the ball stays the same but is continuously exchanged between kinetic and potential forms

4 0
2 years ago
What are the factors that affect the weather?​
jarptica [38.1K]

Answer:

temperature, atmosphere pressure,wind, topography, humidity etc

6 0
3 years ago
Estimate how much solar energy reaches the earth per year (in Joule).
Alexxandr [17]

Each hour 430 quintillion Joules of energy from the sun hits the Earth.

In a year it is very hard to determine because of the night and different light levels.

4 0
3 years ago
Protons have a positive charge<br><br> A.True<br> B.False
PIT_PIT [208]

Answer:

TRUE

Explanation:

Protons have a positive charge. Electrons have a negative charge. The charge on the proton and electron are exactly the same size but opposite. Neutrons have no charge.

5 0
3 years ago
Read 2 more answers
Other questions:
  • What are ways to stop erosion? and what are are benefits and downfalls to that method?
    11·1 answer
  • Usually the hull of a ship contains a large volume of air. Why?
    6·1 answer
  • What is the relationship between radio waves and the visible spectrum
    7·1 answer
  • If a 990 kg car is traveling on the road and the Ff is 360 N to the east and the applied force is 1330 N to the west, what is th
    6·1 answer
  • The weight of a metal bracelet is measured to be 0.10400 N in air and 0.08400 N when immersed in water. Find its density.
    7·1 answer
  • When organism dies , the nutrients in its body ?
    9·1 answer
  • What would happen if the Earth stopped rotating?
    15·1 answer
  • HEY PLEASE HELP AM DESPERATE!!!!!!
    9·2 answers
  • HELP ME OUT PLEASE!!!!!
    12·2 answers
  • A low-luminosity star has a small and narrow ________, whereas a high-luminosity star has a large and wide one.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!