1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
drek231 [11]
3 years ago
8

An isotope is a version of the same element that differs in the composition of the

Physics
1 answer:
Anestetic [448]3 years ago
8 0
Answer: B) Nucleus
Located in the nucleus, neutrons are the particles in an atom that have a neutral charge. Isotopes have different numbers of neutrons.
You might be interested in
A 10-kg package drops from chute into a 25-kg cart with a velocity of 3 m/s. The cart is initially at rest and can roll freely w
amid [387]

Answer:

(a) the final velocity of the cart is 0.857 m/s

(b) the impulse experienced by the package is 21.43 kg.m/s

(c) the fraction of the initial energy lost is 0.71

Explanation:

Given;

mass of the package, m₁ = 10 kg

mass of the cart, m₂ = 25 kg

initial velocity of the package, u₁ = 3 m/s

initial velocity of the cart, u₂ = 0

let the final velocity of the cart = v

(a) Apply the principle of conservation of linear momentum to determine common final velocity for ineleastic collision;

m₁u₁  + m₂u₂ = v(m₁  +  m₂)

10 x 3   + 25 x 0   = v(10  +  25)

30  = 35v

v = 30 / 35

v = 0.857 m/s

(b) the impulse experienced by the package;

The impulse = change in momentum of the package

J = ΔP = m₁v - m₁u₁

J = m₁(v - u₁)

J = 10(0.857 - 3)

J = -21.43 kg.m/s

the magnitude of the impulse experienced by the package = 21.43 kg.m/s

(c)

the initial kinetic energy of the package is calculated as;

K.E_i = \frac{1}{2} mu_1^2\\\\K.E_i = \frac{1}{2} \times 10 \times (3)^2\\\\K.E_i = 45 \ J\\\\

the final kinetic energy of the package;

K.E_f = \frac{1}{2} (m_1 + m_2)v^2\\\\K.E_f = \frac{1}{2} \times (10 + 25) \times 0.857^2\\\\K.E_f = 12.85 \ J

the fraction of the initial energy lost;

= \frac{\Delta K.E}{K.E_i} = \frac{45 -12.85}{45} = 0.71

7 0
3 years ago
A uniform meter rule with a mass of 200g is suspended at zero mark pivotes at 22.0cm mark. calculate the mass of the rule.
denpristay [2]

Answer:

The mass of the rule is 56.41 g  

Explanation:

Given;

mass of the object suspended at zero mark, m₁ = 200 g

pivot of the uniform meter rule = 22 cm

Total length of meter rule = 100 cm

0                          22cm                                  100cm

-------------------------Δ------------------------------------

↓                                                                       ↓

200g                                                                 m₂  

Apply principle of moment

(200 g)(22 cm - 0)     = m₂(100 cm - 22 cm)

(200 g)(22 cm) = m₂(78 cm)

m₂ =  (200 g)(22 cm)  / (78 cm)

m₂ = 56.41 g  

Therefore,  the mass of the rule is 56.41 g                                            

3 0
3 years ago
Las condiciones iniciales de un gas son 3000 cm3
slava [35]

Answer:

T'=92.70°C

Explanation:

To find the temperature of the gas you use the equation for ideal gases:

PV=nRT

V: volume = 3000cm^3 = 3L

P: pressure = 1250mmHg; 1 mmHg = 0.001315 atm

n: number of moles

R: ideal gas constant = 0.082 atm.L/mol.K

T: temperature = 27°C = 300.15K

For the given values you firs calculate the number n of moles:

n=\frac{PV}{RT}=\frac{(1520[0.001315atm])(3L)}{(0.082\frac{atm.L}{mol.K})(300.15K)}=0.200moles

this values of moles must conserve when the other parameter change. Hence, you have V'=2L and P'=3atm. The new temperature is given by:

T'=\frac{P'V'}{nR}=\frac{(3atm)(2L)}{(0.200\ moles)(0.082\frac{atm.L}{mol.K})}=365.85K=92.70\°C

hence, T'=92.70°C

8 0
3 years ago
According to recent research, ice skaters are able to glide smoothly across the ice because _____.
nekit [7.7K]
In the blank should go of friction.
8 0
3 years ago
What happens to gravity when someone jumps up?
Alla [95]

Answer:

The direct answer to the question as written is as follows: nothing happens to gravity when someone jumps up - gravity continues exerting a force on the body of that particular someone proportional to (mass of someone) x (mass of Earth) / (distance squared). What you might be asking, however, is what is the net force acting on the body of someone jumping up. At the moment of  someone jumping up there is an upward acceleration, i.e., an upward-directed force which counteracts the gravitational force - this is the net force ( a result of the jump force minus gravity). From that moment on, only gravity acts on the body. The someone moves upward gradually decelerating to the downward gravitational acceleration until they reaches the peak of the jump (zero velocity). Then, back to Earth.


5 0
3 years ago
Other questions:
  • Four penguins that are being playfully pulled along very slippery (frictionless) ice by a curator. The masses of three penguins
    5·1 answer
  • Giving choices helps children by
    13·2 answers
  • The length of the student desk is measured using a
    8·1 answer
  • A manufacturer of CD-ROM drives claims that the player can spin the disc as frequently as 1200 revolutions per minute.
    8·1 answer
  • I need help on this question!!!
    8·1 answer
  • The gravitational force acting on a lead ball is much larger than that acting on a wooden ball of the same size. Which statement
    8·1 answer
  • How long does it take an automobile traveling in the left lane of a highway at 60.0 km/h to overtake (become even with) another
    8·1 answer
  • What is the magnitude of the acceleration of a speck of clay on the edge of a potter’s wheel turning at 45 rpm (revolutions per
    13·2 answers
  • 10 N pushes a 10 kg crate to the right. Determine the acceleration of the crate.
    11·1 answer
  • Skin cells have the function of protecting the body. What is the function of muscle cells?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!