Answer:
can you clear your question I can't understand
Answer: I belive that the Answer is C.) Conduction
Explanation:
Answer:
the final angular velocity of the platform with its load is 1.0356 rad/s
Explanation:
Given that;
mass of circular platform m = 97.1 kg
Initial angular velocity of platform ω₀ = 1.63 rad/s
mass of banana
= 8.97 kg
at distance r = 4/5 { radius of platform }
mass of monkey
= 22.1 kg
at edge = R
R = 1.73 m
now since there is No external Torque
Angular momentum will be conserved, so;
mR²/2 × ω₀ = [ mR²/2 +
(
R)² +
R² ]w
m/2 × ω₀ = [ m/2 +
(
)² +
]w
we substitute
w = 97.1/2 × 1.63 / ( 97.1/2 + 8.97(16/25) + 22.1
w = 48.55 × [ 1.63 / ( 48.55 + 5.7408 + 22.1 )
w = 48.55 × [ 1.63 / ( 76.3908 ) ]
w = 48.55 × 0.02133
w = 1.0356 rad/s
Therefore; the final angular velocity of the platform with its load is 1.0356 rad/s
Answer:
Explanation:
Let i be the angle of incidence and r be the angle of refraction .
From the figure
Tan ( 90 - i ) = 2.5 / 8
cot i = 2.5 / 8
Tan i = 8 / 2.5 = 3.2
i = 72.65°
From snell's law
sini / sin r = refractive index
sin 72.65 / sinr = 1.333
sin r = .9545 / 1.333
= .72
r = 46⁰
From the figure
Tan r = d / 4
Tan 46 = d /4
d = 4 x Tan 46
= 4 x 1.0355
=4.14 m .
Answer:
This is known as a Galilean transformation where
V' = V - U
Where the primed frame is the Earth frame and the unprimed frame is the frame moving with respect to the moving frame
V - speed of object in the unprimed frame
U - speed of primed frame with respect to the unprimed frame
Here we have:
V = -15 m/s speed of ball in the moving frame (the truck)
U = -20 m/s speed of primed (rest) frame with respect to moving frame
So V' = -15 - (-20) = 5 m/s
It may help if you draw a vector representing the moving frame and then add
a vector representing the speed of the ball in the moving frame.