Answer:
3626.76dm³
Explanation:
Given parameters:
Number of moles of Nitrogen in tank = 17moles
Temperature of the gas = 34°C
Pressure on the gas = 12000Pa
Unkown:
Volume of the tank, V =?
Converting the parameters to workable units:
We take the temperature from °C to Kelvin
K = 273 + °C = 273 + 34 = 307k
Taking the pressure in Pa to atm:
101325Pa = 1atm
12000Pa = 0.118atm
Solution:
To solve this problem, we employ the use of the ideal gas equation. The ideal gas law combines three gas laws which are the Boyle's law, Charles's law and the Avogadro's law.
It is expressed as PV = nRT
The unknown is the Volume and we make it the subject of the formula
V = 
Where R is called the gas constant and it is given as 0.082atmdm³mol⁻¹K⁻¹
Therefore V =
= 3626.76dm³
Answer:
The ionization energy (in kJ/mol) of the helium ion is 21,004.73 kJ/mol .
Explanation:

Z = atomic mass
n = principal quantum number
Energy of the electron in n=1,

Energy of the electron in n = ∞

Ionization energy of the
ion:


To convert in into kj/mol multiply it with 

Answer:
I think it both physical & chemical change :')
Answer:
The negatively charged rod will force a stream of water away from the rod because of the "attractive force. "
Explanation:
As we know that water molecules have been randomly arranged. So when a negatively charged rod is put near the stream of water, the molecules present in the water start rotating, unless the positive side will be close to the negative side of the rod. Which results in the generation of the attraction force. Hence, the stream of the water forces away the negatively charged rod. When the water molecules have polarized molecules in it the effect will be stronger than the dust.