1) <span>A solar eclipse that occurs when the new moon is too far from earth to completely cover the sun can be either a partial solar eclipse or an -->
Answer: ANULAR ECLIPSE. Since the moon is too far, it will cover only a part of the sun, and only the external ring of the moon will be visible; this is called anular eclipse.
2) </span><span>anyone looking from the night side of earth can, in principle, see a -->
Answer: LUNAR ECLIPSE. If the moon is the right position, and the Earth's shadow covers partially or totally the moon, then a lunar eclipse occurs.
3) </span><span>during some lunar eclipses, the moon's appearance changes only slightly, because it passes only through the part of earth's shadow called the -->
Answer: PENUMBRA.
4) </span><span>a ... can occur only when the moon is new and has an angular size larger than the sun in the sky -->
Answer: TOTAL SOLAR ECLIPSE. When the moon is new, it means it is between the sun and the Earth, and its dark side faces the Earth. If the moon's angular size is also larger than the sun angular size, than it will completely cover the sun, and a total solar eclipse occurs.
5) </span><span>a partial lunar eclipse begins when the moon first touches earth's -->
Answer: SHADOW. The Earth's shadow will start to cover the moon, and partial lunar eclipse will start.
6) </span><span> a point at which the moon crosses earth's orbital plane is called a(n) -->
Answer: NODE. Eclipses occur only when the Moon is at or close to a node, otherwise sun, earth and moon are not "aligned".</span>
False... I hope that helps ;)
<u>Answer:</u>
Ball will move 92.8125 meter along the cliff in 7.5 seconds.
<u>Explanation:</u>
We have equation of motion ,
, s is the displacement, u is the initial velocity, a is the acceleration and t is the time.
In this case initial velocity = 0 m/s, acceleration = 3.3
, we need to calculate displacement when time = 7.5 seconds.
Substituting

So ball will move 92.8125 meter along the cliff in 7.5 seconds.
Answer:
c
Explanation:
it's the only one that makes sense
The magnitude of the electric field at the proton's location is 10,437.5 N/C.
<h3>What the magnitude of the
electric field?</h3>
The size of the electric field is basically characterized as the power per charge on the test charge. On the off chance that the electric field strength is meant by the image E. Very much like gravity, electric fields work the same way. In any case, while gravity generally draws in, an electric field, then again, can either rebuff or draw in. By and large, the Electric Field submits to the super-position guideline. the all out Electric Field from various charges is equivalent to the amount of the electric fields from each charge separately. An electric field is the actual field that encompasses electrically charged particles and applies force on any remaining charged particles in the field, either drawing in or repulsing them.
Learn more about the magnitude of the electric field, visit
brainly.com/question/26898699
#SPJ4