Explanation:
Both conduction and convection are both forms of heat transfer from one place to another.
- In conduction, there must be contact between two bodies for the process to take place but in convection, the matter moves to transfer heat.
- Conduction mostly occurs in solid substances whereas convection occurs mostly in fluids.
- Heat transfer in conduction is quite slow compared to convection which is much faster.
Example of conduction is heating of iron pot when cooking
Example of convection is the refrigerating system.
Answer: -
The hydrogen at 10 °C has slower-moving molecules than the sample at 350 K.
Explanation: -
Temperature of the hydrogen gas first sample = 10 °C.
Temperature in kelvin scale of the first sample = 10 + 273 = 283 K
For the second sample, the temperature is 350 K.
Thus we see the second sample of the hydrogen gas more temperature than the first sample.
We know from the kinetic theory of gases that
The kinetic energy of gas molecules increases with the increase in temperature of the gas. The speed of the movement of gas molecules also increase with the increase in kinetic energy.
So higher the temperature of a gas, more is the kinetic energy and more is the movement speed of the gas molecules.
Thus the hydrogen at 10 °C has slower-moving molecules than the sample at 350 K.
The electromagnetic force is attractive for unlike charges and repulsive for like charges
Answer:
we have two loops in our body in which blood circulates. One is oxygenated, meaning oxygen rich, and the other is deoxygenated, which means it has little to no oxygen, but a lot of carbon dioxide.