Answer:
D.
Explanation:
If a compound is composed of oppositely charged ions, it has to be formed by metal and non-metal.
Li2O
Li - metal
O - non-metal
To solve this question, think about which one of these options is a DIRECT effect of sea levels rising.
Choice A: If sea levels rise, they would start to cover up land that's at sea level, areas like beaches or coastal cities for example.
Choice B: Fossil fuels cause global warming. This is about the effects of global warming, not the causes.
Choice C: Not relevant. It doesn't mention alternative energy at all in this.
Choice D: Again, effects, not causes (see Choice B explanation).
The correct answer is... CHOICE A
HBr and HF are both monoprotic Arrhenius acids—that is, in aqueous solution, they dissociate and ionize to give hydrogen ions. A strong acid ionizes completely; a weak acid ionizes partially.
In this case, HBr, being a strong acid, would ionize completely in water to yield H+ and Br- ions. However, HF, being a weak acid, would ionize only to a limited extent: some of the HF molecules will ionize into H+ and F- ions, but most of the HF will remain undissociated.
pH is, by definition, a measurement of the concentration of hydrogen ions in solution (pH = -log[H+]). A higher concentration of hydrogen ions gives a lower pH, while a lower concentration of hydrogen ions gives a higher pH. At 25 °C, a pH of 7 indicates a neutral solution; a pH less than 7 indicates an acidic solution; and a pH greater than 7 indicates a basic solution.
If we have equal concentrations of HBr and HF, then the HBr solution will have a greater concentration of hydrogen ions in solution than the HF solution. Consequently, the pH of the HBr solution will be less than the pH of the HF solution.
Choice A is incorrect: Strong acids like HBr dissociate completely, not partially.
Choice B is incorrect: While the initial concentration of HBr and HF are the same, the H+ concentration in the HBr solution is greater. Since pH is a function of H+ concentration, the pH of the two solutions cannot be the same.
Choice C is correct: A greater H+ concentration gives a lower pH value. The HBr solution has the greater H+ concentration. Thus, the pH of the HBr solution would be less than that of the HF solution.
Choice D is incorrect for the reason why choice C is correct.
The element found in the liver that helps prevent anemia is iron.
Iron is an essential element for blood production. Close to 70% of the body's iron is found in the red blood cells. In the red blood cells it is a vital ingredient of hemoglobin, the red pigment that gives blood its red color. In the muscle cells, iron is found as myoglobin.
Iron is stored mostly in the liver as ferritin or hemosiderin.
When iron stores are finished or exhausted, the condition is called iron depletion. When the shortage of iron is severe, it results in a condition known as iron deficiency anemia whereby the red blood cells do not have enough hemoglobin.
I would say chemical but I’m not 100% sure might wanna get a second opinion