Answer:
The options are not shown, so let's derive the relationship.
For an object that is at a height H above the ground, and is not moving, the potential energy will be:
U = m*g*H
where m is the mass of the object, and g is the gravitational acceleration.
Now, the kinetic energy of an object can be written as:
K = (1/2)*m*v^2
where v is the velocity.
Now, when we drop the object, the potential energy begins to transform into kinetic energy, and by the conservation of the energy, by the moment that H is equal to zero (So the potential energy is zero) all the initial potential energy must now be converted into kinetic energy.
Uinitial = Kfinal.
m*g*H = (1/2)*m*v^2
v^2 = 2*g*H
v = √(2*g*H)
So we expressed the final velocity (the velocity at which the object impacts the ground) in terms of the height, H.
The work done to stretch the spring will be 112 J.
<h3>What is spring force?</h3>
The force required to extend or compress a spring by some distance scales linearly with respect to that distance is known as the spring force. Its formula is
F = kx
The given data in the problem is;
F is the spring force =?
K is the spring constant= 8.5 N/m
x is the length by which spring got stretched = 1.2m
The work is done to stretch the spring is;

To learn more about the spring force refer to the link;
brainly.com/question/4291098
#SPJ1
just search up the answer/ definition to all of them, rephrase into own words, then do the same for examples.
Answer:
a)
, b)
, c) 
Explanation:
a) The change in the gravitational potential energy of the marble-Earth system is:


b) The change in the elastic potential energy of the spring is equal to the change in the gravitational potential energy, then:

c) The spring constant of the gun is:




Answer:
612000 C
Explanation:
Current, I, is given as the rate of flow of charge, that is:
I = Δq / Δt
where q = electric charge
t = time taken
This implies that:
Δq = I * Δt
The battery rating is 170 Ampere-hours, therefore:
Δq = 170 * 1 hour
But 1 hour = 3600 seconds;
=> Δq = 170 * 3600 = 612000 C
The total charge that the battery can provide is 612000 C.