Answer:
Explanation:
Given that,
The compression in the spring, x = 0.0647 m
Speed of the object, v = 2.08 m/s
To find,
Angular frequency of the object.
Solution,
We know that the elation between the amplitude and the angular frequency in SHM is given by :
A is the amplitude
In case of spring the compression in the spring is equal to its amplitude
So, the angular frequency of the spring is 32.14 rad/s.
Answer:
The sun
Explanation:
In this system the energy of the sun heats the water in the pipe, producing a high pressured steam, which is used for moving a turbine and producing electricity, is a transformation of energy from solar to thermal, then to mechanical to electrical.
Answer:
Friction between the box and the floor is 25N to the left
Explanation:
There are two forces acting on the box along the horizontal direction:
- The force of push applied by the worker, in the forward direction, F
- The force of friction, , acting in the opposite direction (backward)
So the net force acting on the box is
According to Newton's second law of motion, the net force on an object is equal to the product between its mass (m) and its acceleration (a), so we can write:
And so
However, in this case the box is moving at constant speed; this means that its acceleration is zero:
Therefore we have:
Which means
And since we are told that
This means that the force of friction is also 25 N:
Neap tide = tide where there is the least difference between high and low water levels
Spring tide = tide where there is the greatest difference between high and low water levels
Equator = an imaginary line drawn around earth dividing it into northern and southern hemispheres
Seasons = the divisions of the year marked by specific weather patterns and daylight hours.
Hope this helps!
Kinetic energy is calculated by using formula:
Ek = 1/2*m*v^2
Now we replace values of mass and speed in this formula.
Ek = 1/2*10*3^2 = 45.0J
When you have a formula and all variable values are given in the text of question just replace variable values in equation and find the final value.