The time elapsed when the vehicles are closest to each other is 20 min.
The given parameters:
- Speed of the truck, u = 80 km/h
- Distance, d = 32 km
- Speed of the car, v = 50 km/h
<h3>Principles of relative speed</h3>
The time elapsed when the cars are close to each other is calculated by applying the principles of relative speed.


Thus, the time elapsed when the vehicles are closest to each other is 20 min.
Learn more about relative velocity here: brainly.com/question/24430414
Answer:
low, low
Explanation:
Longer wavelengths will have lower frequencies, and shorter wavelengths will have higher frequencies.
Large amplitude waves contain more energy. The other is frequency, which is the number of waves that pass by each second. If more waves( or more wiggly lines) pass by, more energy is transferred each second
Part A:
For this part we’re assuming all the kinetic energy of the moving bumper car is converted into elastic potential energy in the spring since the car is brought to rest. Therefore you can find the total kinetic energy to get your answer:
KE = ½ mv^2
KE = ½ (200)(8)^2
KE = 6400 J
Part B:
Now you can use Hooke’s law to find the force:
F = kx
F = (5000)(0.2)
F = 1000 N
Answer:
B) shrinks
Explanation:
The magnetic force is a force exerted between two magnets, or two magnetic materials, or also on an electric charge moving in a magnetic field.
If we talk about magnetic material, the magnetic field they generates can be represented using a dipole: essentially, they have a north pole (where the lines of the field go out) and a south pole (where the lines of the field go in).
Also, the lines spread apart as we move away from the magnet itself. This means that the strength of the field (and so, the intensity of the force) decreases as we move away from the magnet.
Using this description, we can now understand that when we move the paper clip further from the magnet, the force exerted on the clip decreases, as the magnetic field becomes weaker. So, the correct answer is B.