The equation that satisfies the information provided is y=2.75x, therefore the coordinates to plot on your graph are as follows.
(1,2.75)
(6,16.50)
(10, 27.5)
(20,55)
(30,82.5)
(40,110)
The graph accordingly, can’t really get the whole graph in but hopefully you get the idea and you can use the coordinates above :)
B = tp - (s + 2000) / 3
b=(8000)(12) - (4000 + 2000) / 3
b=(96000) - (6000) / 3
b=96000 - 6000 / 3
Answer
b=£30000
b=£94000
Answer:
34+24.5h
Step-by-step explanation:
Answer:
3183.34 cm³
Step-by-step explanation:
let's recall that on the II Quadrant x/cosine is negative whilst y/sine is positive,
also let's recall that the hypotenuse is simply the radius distance and thus is never negative.
![\bf cot(\theta )=\cfrac{\stackrel{adjacent}{-2}}{\stackrel{opposite}{1}}\impliedby \textit{let's find the hypotenuse} \\\\\\ \textit{using the pythagorean theorem} \\\\ c^2=a^2+b^2\implies c=\sqrt{a^2+b^2} \qquad \begin{cases} c=hypotenuse\\ a=adjacent\\ b=opposite\\ \end{cases} \\\\\\ c=\sqrt{(-2)^2+1^2}\implies c=\sqrt{5} \\\\[-0.35em] ~\dotfill\\\\ csc(\theta )=\cfrac{\stackrel{hypotenuse}{\sqrt{5}}}{\stackrel{opposite}{1}}\implies csc(\theta )=\sqrt{5}](https://tex.z-dn.net/?f=%5Cbf%20cot%28%5Ctheta%20%29%3D%5Ccfrac%7B%5Cstackrel%7Badjacent%7D%7B-2%7D%7D%7B%5Cstackrel%7Bopposite%7D%7B1%7D%7D%5Cimpliedby%20%5Ctextit%7Blet%27s%20find%20the%20hypotenuse%7D%20%5C%5C%5C%5C%5C%5C%20%5Ctextit%7Busing%20the%20pythagorean%20theorem%7D%20%5C%5C%5C%5C%20c%5E2%3Da%5E2%2Bb%5E2%5Cimplies%20c%3D%5Csqrt%7Ba%5E2%2Bb%5E2%7D%20%5Cqquad%20%5Cbegin%7Bcases%7D%20c%3Dhypotenuse%5C%5C%20a%3Dadjacent%5C%5C%20b%3Dopposite%5C%5C%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5C%5C%20c%3D%5Csqrt%7B%28-2%29%5E2%2B1%5E2%7D%5Cimplies%20c%3D%5Csqrt%7B5%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20csc%28%5Ctheta%20%29%3D%5Ccfrac%7B%5Cstackrel%7Bhypotenuse%7D%7B%5Csqrt%7B5%7D%7D%7D%7B%5Cstackrel%7Bopposite%7D%7B1%7D%7D%5Cimplies%20csc%28%5Ctheta%20%29%3D%5Csqrt%7B5%7D)