Answer:
89.16pounds
Explanation:
The equation that defines this problem is as follows
W=k/X^2
where
W=Weight
K=
proportionality constant
X=distance from the center of Earth
first we must find the constant of proportionality, with the first part of the problem
k=WX^2=131x3960^2=2054289600pounds x miles^2
then we use the equation to calculate the woman's weight with the new distance
W=2054289600/(4800)^2=89.16pounds
Answer:
Disambiguation
Explanation:
Fg is an abbreviation used in physics to describe the amount of force exerted by gravity on an object, normally represented in units such as the newton.
The work done by a constant force in a rectilinear motion is given by:

where F is the magnitude of the force, d is the distance and θ is the angle between the force and the displacement vector.
In this case we have two forces then we need to add the work done by each of them; for the first force we have a magnitude of 17 N, a displacement of 12 m and and angle of 0° (since both the displacement and the force point right); for the second force we have a magnitude of 36 N, a displacement of 12 m and an angle of 30°. Plugging these values we have that the total work is:

Therefore, the total work done is 578.123 J and the answer is option E
Compared to the pucks given, the pair of pucks will rotate at the same rate.
Answer: Option A
<u>Explanation:</u>
The law of conservation of the angular momentum expresses that when no outer torque follows upon an article, no difference in angular momentum will happen. At the point when an item is turning in a shut framework and no outside torques are applied to it, it will have no change in angular momentum.
The conservation of the angular momentum clarifies the angular quickening of an ice skater as she brings her arms and legs near the vertical rotate of revolution. In the event, that the net torque is zero, at that point angular momentum is steady or saved.
By twice the mass yet keeping the speeds unaltered, also twice the angular momentum's to the two-puck framework. Be that as it may, we likewise double the moment of inertia. Since
, the turning rate of the two-puck framework must stay unaltered.