Answer:
b is ur answer the temputer does increase
Explanation:
Answer:
The answer fo this is D because of the person controlling the outcome for both variables
Answer:
volume is equal to the mass divided by the density (V = M/d).
Answer:
3 Cu²⁺(aq) + 2 PO₄³⁻(aq) ⇒ Cu₃(PO₄)₂(s)
Explanation:
Let's consider the molecular equation between aqueous copper(II) chloride and aqueous sodium phosphate.
3 CuCl₂(aq) + 2 Na₃PO₄(aq) ⇒ 6 NaCl(aq) + Cu₃(PO₄)₂(s)
The complete ionic equation includes all the ions and insoluble species.
3 Cu²⁺(aq) + 6 Cl⁻(aq) + 6 Na⁺(aq) + 2 PO₄³⁻(aq) ⇒ 6 Na⁺(aq) + 6 Cl⁻(aq) + Cu₃(PO₄)₂(s)
The net ionic equation includes only the ions that participate in the reaction (not spectator ions) and insoluble species.
3 Cu²⁺(aq) + 2 PO₄³⁻(aq) ⇒ Cu₃(PO₄)₂(s)
Answer:
dipole-dipole forces, ion-dipole forces, higher molar mass, hydrogen bonding, stronger intermolecular forces
Explanation:
<em>1. H₂S and H₂Se exhibit the following intermolecular forces: </em><em>dipole-dipole forces </em><em>and </em><em>ion-dipole forces</em><em>.</em> These molecules have a bent geometry, thus, a dipolar moment which makes them dipoles. When they are in the aqueous form they are weak electrolytes whose ions interact with the water dipoles
<em>2. Therefore, when comparing H₂S and H₂Se the one with a </em><em>higher molar mass</em><em> has a higher boiling point.</em> In this case, H₂Se has a higher boiling point than H₂S due to its higher molar mass.
<em>3. The strongest intermolecular force exhibited by H₂O is </em><em>hydrogen bonding</em><em>. </em>This is a specially strong dipole-dipole interaction in which the positive density charge on the hydrogens is attracted to the negative density charge on the oxygen.
<em>4. Therefore, when comparing H₂Se and H₂O the one with </em><em>stronger intermolecular forces</em><em> has a higher boiling point. </em>That's why the boiling point of H₂O is much higher than the boiling point of H₂Se.