To calculate the specific heat capacity of an object or substance, we can use the formula
c = E / m△T
Where
c as the specific heat capacity,
E as the energy applied (assume no heat loss to surroundings),
m as mass and
△T as the energy change.
Now just substitute the numbers given into the equation.
c = 2000 / 2 x 5
c = 2000/ 10
c = 200
Therefore we can conclude that the specific heat capacity of the block is 200 Jkg^-1°C^-1
Answer:
2697.75N/m
Explanation:
Step one
This problem bothers on energy stored in a spring.
Step two
Given data
Compression x= 2cm
To meter = 2/100= 0.02m
Mass m= 0.01kg
Height h= 5.5m
K=?
Let us assume g= 9.81m/s²
Step three
According to the principle of conservation of energy
We know that the the energy stored in a spring is
E= 1/2kx²
1/2kx²= mgh
Making k subject of formula we have
kx²= 2mgh
k= 2mgh/x²
k= (2*0.01*9.81*5.5)/0.02²
k= 1.0791/0.0004
k= 2697.75N/m
Hence the spring constant k is 2697.75N/m
So E = 2x10^-3W/m^2*(π*(3.0x10^-3m)^2)*1min*60s... = 3.4x10^-6J
Answer:
a) v=2.743m/s
b) 
c) T=2.543N
Explanation:
First, calculate the height of the ball at the starting point:


At this point, just in the moment the ball is released, all the energy of the system is potencial gravitational energy. When it is at the bottom all the potencial energy is transformed into kinetic energy:

Solving for v:

if h is the height loss: (l-y')
v=2.743m/s
The centripetal acceleration is the acceleration caused by the tension force exercised by the string, and is pointing outside of the trayectory path (at the lowest point, directly dawn):


To calculate tension, just make the free body diagram of forces in the ball, noticing the existence of the centripetal acceleration:

This is a classic problem in statics. The counterweight is placed so that the tower crane would be stable, or the total moment is zero. There are four sources of torques: the load, the jib BD, the jib BC, and the counter weight. Staring with the total moment equals zero, and taking clockwise moments as positive. The units of moment here is Mg * m.
M = 0
(2.0)(12.5) + (1.7)(9.5) - (0.6)(4) - (C)(7.5) = 0
7.5C = 38.75
C = 5.17 Mg
Therefore, the counterweight must be 5.17 Mg.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!