1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ghella [55]
3 years ago
6

Three observers watch a train pull away from a station toward the right of the platform. Observer A is in one of the train’s car

s; Observer B is on the station platform; and Observer C is on another train traveling in the opposite direction along a parallel track. How would the observer in each frame of reference describe the motion of the train? According to Newton’s laws of motion, how would the motion in the station platform’s frame of reference change if the conductor applied the brakes to the train? Does universal gravitation affect the train? Explain why or why not.
Physics
1 answer:
juin [17]3 years ago
5 0

Observer A is moving inside the train

so here observer A will not be able to see the change in position of train as he is standing in the same reference frame

So here as per observer A the train will remain at rest and its not moving at all

Observer B is standing on the platform so here it is a stationary reference frame which is outside the moving body

So here observer B will see the actual motion of train which is moving in forward direction away from the platform

Observer C is inside other train which is moving in opposite direction on parallel track. So as per observer C the train is coming nearer to him at faster speed then the actual speed because they are moving in opposite direction

So the distance between them will decrease at faster rate

Now as per Newton's II law

F = ma

Now if train apply the brakes the net force on it will be opposite to its motion

So we can say

- F = ma

a = \frac{-F}{m}

so here acceleration negative will show that train will get slower and its distance with respect to us is now increasing with less rate

It is not affected by the gravity  because the gravity will cause the weight of train and this weight is always counterbalanced by normal force on the train

So there is no effect on train motion



You might be interested in
An air craft heads north at 320 km/hr relative to the wind. the wind velocity is 80km/hr from the north. find the relative veloc
Gnoma [55]

Answer:

Relative to the ground, the velocity of the aircraft is 240 km/hr

Explanation:

Relative velocity is different from normal velocity;

When 2 objects are moving in opposite directions towards each other, they will appear to be faster than they actually are;

This is known as the relative velocity;

The information tells us we have the aircraft moving 320 km/hr northwards relative to the wind;

The wind is in the opposite direction at 80 km/hr;

R = relative velocity of the aircraft

v = actual velocity of the aircraft

w = velocity of the wind

R = v + w

Note: if the wind was moving in the same direction, the formula would be R = v - w

320 = v + 80

v = 320 - 80

v = 240

The velocity relative to the ground is simply the actual velocity as the ground doesn't move;

So, relative to the ground, the velocity of the aircraft is simply 240 km/hr

7 0
2 years ago
Need a little help here :(
Goshia [24]

Answer:

The output out be 200

Explanation:

Hope this helps :))

8 0
3 years ago
Read 2 more answers
Joe has a mass of 40 kg, and Sally has a mass of 25 kg. They sit in class with a separation of 6 meters. Find the gravitational
goldfiish [28.3K]

Answer:

hmmmmmmmm

Explanation:

mmmmmmmmmmmmmmmmmmmmmmm  pay attention in class kid

4 0
3 years ago
X-rays with an energy of 300 keV undergo Compton scattering from a target. If the scattered rays are detected at 30 relative to
lys-0071 [83]

Answer:

a) \Delta \lambda = \lambda' -\lambda_o = \frac{h}{m_e c} (1-cos \theta)

For this case we know the following values:

h = 6.63 x10^{-34} Js

m_e = 9.109 x10^{-31} kg

c = 3x10^8 m/s

\theta = 37

So then if we replace we got:

\Delta \lambda = \frac{6.63x10^{-34} Js}{9.109 x10^{-31} kg *3x10^8 m/s} (1-cos 37) = 4.885x10^{-13} m * \frac{1m}{1x10^{-15} m}= 488.54 fm

b) \lambda_0 = \frac{hc}{E_0}

With E_0 = 300 k eV= 300000 eV

And replacing we have:

\lambda_0 = \frac{1240 x10^{-9} eV m}{300000eV}=4.13 x10^{-12}m = 4.12 pm

And then the scattered wavelength is given by:

\lambda ' = \lambda_0 + \Delta \lambda = 4.13 + 0.489 pm = 4.619 pm

And the energy of the scattered photon is given by:

E' = \frac{hc}{\lambda'}= \frac{1240x10^{-9} eVm}{4.619x10^{-12} m}=268456.37 eV - 268.46 keV

c) E_f = E_0 -E' = 300 -268.456 kev = 31.544 keV

Explanation

Part a

For this case we can use the Compton shift equation given by:

\Delta \lambda = \lambda' -\lambda_0 = \frac{h}{m_e c} (1-cos \theta)

For this case we know the following values:

h = 6.63 x10^{-34} Js

m_e = 9.109 x10^{-31} kg

c = 3x10^8 m/s

\theta = 37

So then if we replace we got:

\Delta \lambda = \frac{6.63x10^{-34} Js}{9.109 x10^{-31} kg *3x10^8 m/s} (1-cos 37) = 4.885x10^{-13} m * \frac{1m}{1x10^{-15} m}= 488.54 fm

Part b

For this cas we can calculate the wavelength of the phton with this formula:

\lambda_0 = \frac{hc}{E_0}

With E_0 = 300 k eV= 300000 eV

And replacing we have:

\lambda_0 = \frac{1240 x10^{-9} eV m}{300000eV}=4.13 x10^{-12}m = 4.12 pm

And then the scattered wavelength is given by:

\lambda ' = \lambda_0 + \Delta \lambda = 4.13 + 0.489 pm = 4.619 pm

And the energy of the scattered photon is given by:

E' = \frac{hc}{\lambda'}= \frac{1240x10^{-9} eVm}{4.619x10^{-12} m}=268456.37 eV - 268.46 keV

Part c

For this case we know that all the neergy lost by the photon neds to go into the recoiling electron so then we have this:

E_f = E_0 -E' = 300 -268.456 kev = 31.544 keV

3 0
2 years ago
Read 2 more answers
BRainliest if correct (if you don't know don't answer.)<br><br> 2
klemol [59]
Diagram B .... light shines through at an angle
6 0
2 years ago
Read 2 more answers
Other questions:
  • Using information about natural laws, explain why some car crashes produce minor injuries and others produce catastrophic injuri
    15·1 answer
  • Which unit is equivalent to j/s
    15·1 answer
  • To what does the term register refer in describing sound?
    8·1 answer
  • Two cars drive on a straight highway. At time t=0, car 1 passes mile marker 0 traveling due east with a speed of 20.0 m/s. At th
    10·1 answer
  • Please help I'm taking a timed test!
    15·2 answers
  • It is weigh-in time for the local under-85-kg rugby team. The bathroom scale used to assess eligibility can be described by Hook
    13·1 answer
  • Petroleum contains _____ energy.<br> A. light<br> B. kinetic<br> C. chemical<br> D. mechanical
    8·2 answers
  • A wave with 2.0 m amplitude has a frequency of 500 Hz is travelling at a speed of 200 m/s. What is the wavelength?
    11·1 answer
  • According to the rayleigh criterion, what is the shortest object we could resolve at the 25.0 cm near point with light of wavele
    11·1 answer
  • A jet starts from rest and accelerates to a speed of 100 m/s in 10 seconds before taking off. how far does it travel before taki
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!