Answer :
(a) The average rate will be:
![\frac{d[Br_2]}{dt}=9.36\times 10^{-5}M/s](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D%3D9.36%5Ctimes%2010%5E%7B-5%7DM%2Fs)
(b) The average rate will be:
![\frac{d[H^+]}{dt}=1.87\times 10^{-4}M/s](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BH%5E%2B%5D%7D%7Bdt%7D%3D1.87%5Ctimes%2010%5E%7B-4%7DM%2Fs)
Explanation :
The general rate of reaction is,

Rate of reaction : It is defined as the change in the concentration of any one of the reactants or products per unit time.
The expression for rate of reaction will be :
![\text{Rate of disappearance of A}=-\frac{1}{a}\frac{d[A]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20disappearance%20of%20A%7D%3D-%5Cfrac%7B1%7D%7Ba%7D%5Cfrac%7Bd%5BA%5D%7D%7Bdt%7D)
![\text{Rate of disappearance of B}=-\frac{1}{b}\frac{d[B]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20disappearance%20of%20B%7D%3D-%5Cfrac%7B1%7D%7Bb%7D%5Cfrac%7Bd%5BB%5D%7D%7Bdt%7D)
![\text{Rate of formation of C}=+\frac{1}{c}\frac{d[C]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20formation%20of%20C%7D%3D%2B%5Cfrac%7B1%7D%7Bc%7D%5Cfrac%7Bd%5BC%5D%7D%7Bdt%7D)
![\text{Rate of formation of D}=+\frac{1}{d}\frac{d[D]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20formation%20of%20D%7D%3D%2B%5Cfrac%7B1%7D%7Bd%7D%5Cfrac%7Bd%5BD%5D%7D%7Bdt%7D)
![Rate=-\frac{1}{a}\frac{d[A]}{dt}=-\frac{1}{b}\frac{d[B]}{dt}=+\frac{1}{c}\frac{d[C]}{dt}=+\frac{1}{d}\frac{d[D]}{dt}](https://tex.z-dn.net/?f=Rate%3D-%5Cfrac%7B1%7D%7Ba%7D%5Cfrac%7Bd%5BA%5D%7D%7Bdt%7D%3D-%5Cfrac%7B1%7D%7Bb%7D%5Cfrac%7Bd%5BB%5D%7D%7Bdt%7D%3D%2B%5Cfrac%7B1%7D%7Bc%7D%5Cfrac%7Bd%5BC%5D%7D%7Bdt%7D%3D%2B%5Cfrac%7B1%7D%7Bd%7D%5Cfrac%7Bd%5BD%5D%7D%7Bdt%7D)
From this we conclude that,
In the rate of reaction, A and B are the reactants and C and D are the products.
a, b, c and d are the stoichiometric coefficient of A, B, C and D respectively.
The negative sign along with the reactant terms is used simply to show that the concentration of the reactant is decreasing and positive sign along with the product terms is used simply to show that the concentration of the product is increasing.
The given rate of reaction is,

The expression for rate of reaction :
![\text{Rate of disappearance of }Br^-=-\frac{1}{5}\frac{d[Br^-]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20disappearance%20of%20%7DBr%5E-%3D-%5Cfrac%7B1%7D%7B5%7D%5Cfrac%7Bd%5BBr%5E-%5D%7D%7Bdt%7D)
![\text{Rate of disappearance of }BrO_3^-=-\frac{d[BrO_3^-]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20disappearance%20of%20%7DBrO_3%5E-%3D-%5Cfrac%7Bd%5BBrO_3%5E-%5D%7D%7Bdt%7D)
![\text{Rate of disappearance of }H^+=-\frac{1}{6}\frac{d[H^+]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20disappearance%20of%20%7DH%5E%2B%3D-%5Cfrac%7B1%7D%7B6%7D%5Cfrac%7Bd%5BH%5E%2B%5D%7D%7Bdt%7D)
![\text{Rate of formation of }Br_2=+\frac{1}{3}\frac{d[Br_2]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20formation%20of%20%7DBr_2%3D%2B%5Cfrac%7B1%7D%7B3%7D%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D)
![\text{Rate of formation of }H_2O=+\frac{1}{3}\frac{d[H_2O]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20formation%20of%20%7DH_2O%3D%2B%5Cfrac%7B1%7D%7B3%7D%5Cfrac%7Bd%5BH_2O%5D%7D%7Bdt%7D)
Thus, the rate of reaction will be:
![\text{Rate of reaction}=-\frac{1}{5}\frac{d[Br^-]}{dt}=-\frac{d[BrO_3^-]}{dt}=-\frac{1}{6}\frac{d[H^+]}{dt}=+\frac{1}{3}\frac{d[Br_2]}{dt}=+\frac{1}{3}\frac{d[H_2O]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20reaction%7D%3D-%5Cfrac%7B1%7D%7B5%7D%5Cfrac%7Bd%5BBr%5E-%5D%7D%7Bdt%7D%3D-%5Cfrac%7Bd%5BBrO_3%5E-%5D%7D%7Bdt%7D%3D-%5Cfrac%7B1%7D%7B6%7D%5Cfrac%7Bd%5BH%5E%2B%5D%7D%7Bdt%7D%3D%2B%5Cfrac%7B1%7D%7B3%7D%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D%3D%2B%5Cfrac%7B1%7D%7B3%7D%5Cfrac%7Bd%5BH_2O%5D%7D%7Bdt%7D)
<u>Part (a) :</u>
<u>Given:</u>
![\frac{1}{5}\frac{d[Br^-]}{dt}=1.56\times 10^{-4}M/s](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B5%7D%5Cfrac%7Bd%5BBr%5E-%5D%7D%7Bdt%7D%3D1.56%5Ctimes%2010%5E%7B-4%7DM%2Fs)
As,
![-\frac{1}{5}\frac{d[Br^-]}{dt}=+\frac{1}{3}\frac{d[Br_2]}{dt}](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B5%7D%5Cfrac%7Bd%5BBr%5E-%5D%7D%7Bdt%7D%3D%2B%5Cfrac%7B1%7D%7B3%7D%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D)
and,
![\frac{d[Br_2]}{dt}=\frac{3}{5}\frac{d[Br^-]}{dt}](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D%3D%5Cfrac%7B3%7D%7B5%7D%5Cfrac%7Bd%5BBr%5E-%5D%7D%7Bdt%7D)
![\frac{d[Br_2]}{dt}=\frac{3}{5}\times 1.56\times 10^{-4}M/s](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D%3D%5Cfrac%7B3%7D%7B5%7D%5Ctimes%201.56%5Ctimes%2010%5E%7B-4%7DM%2Fs)
![\frac{d[Br_2]}{dt}=9.36\times 10^{-5}M/s](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D%3D9.36%5Ctimes%2010%5E%7B-5%7DM%2Fs)
<u>Part (b) :</u>
<u>Given:</u>
![\frac{1}{5}\frac{d[Br^-]}{dt}=1.56\times 10^{-4}M/s](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B5%7D%5Cfrac%7Bd%5BBr%5E-%5D%7D%7Bdt%7D%3D1.56%5Ctimes%2010%5E%7B-4%7DM%2Fs)
As,
![-\frac{1}{5}\frac{d[Br^-]}{dt}=-\frac{1}{6}\frac{d[H^+]}{dt}](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B5%7D%5Cfrac%7Bd%5BBr%5E-%5D%7D%7Bdt%7D%3D-%5Cfrac%7B1%7D%7B6%7D%5Cfrac%7Bd%5BH%5E%2B%5D%7D%7Bdt%7D)
and,
![-\frac{1}{6}\frac{d[H^+]}{dt}=\frac{3}{5}\frac{d[Br^-]}{dt}](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B6%7D%5Cfrac%7Bd%5BH%5E%2B%5D%7D%7Bdt%7D%3D%5Cfrac%7B3%7D%7B5%7D%5Cfrac%7Bd%5BBr%5E-%5D%7D%7Bdt%7D)
![\frac{d[H^+]}{dt}=\frac{6}{5}\times 1.56\times 10^{-4}M/s](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BH%5E%2B%5D%7D%7Bdt%7D%3D%5Cfrac%7B6%7D%7B5%7D%5Ctimes%201.56%5Ctimes%2010%5E%7B-4%7DM%2Fs)
![\frac{d[H^+]}{dt}=1.87\times 10^{-4}M/s](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BH%5E%2B%5D%7D%7Bdt%7D%3D1.87%5Ctimes%2010%5E%7B-4%7DM%2Fs)
Answer:
solid
Explanation:
Melting and boiling points of Group 7 elements State at room temperature Room temperature is usually taken as being 25°C. At this temperature, fluorine and chlorine are gases, bromine is a liquid, and iodine and astatine are solids. There is therefore a trend in state from gas to liquid to solid as you go down the group.
<span>False,
This is because when you can easily ionize and atom or the chances of it being ionizable are quite high, it means that that particular atom have very low ionization potential that is the reason why it was easily ionizable
An atom with a high ionization power and a firmly negative electron fondness will both pull in electrons from different particles and oppose having its electrons taken away; it will be an exceedingly electronegative molecule.</span>
1. electrostatic interactions
<span>3. van de waals interactions </span>
<span>4. hydrogen bonding </span>