Weast to east , east to west, nort to south, south to nort.
Given,
P1 = 0.98 atm
V1 = 0.5 L
V2 = 1.0 L
P2 = ?
Solution,
According to Boyle's Law,
P1V1 = P2V2
0.98 × 0.5 = 1.0 × P2
P2 = 0.98 × 0.5 × 1.0
P2 = 0.49 atm
Answer - The new pressure is 0.49 atm.
The energy that was released by the candy is calculates using the below formula
Q=Mc delta T
Q= heat energy
m= mass (500g)
C= specific heat capacity) = 4.18 j/g/c
delta t =change in temperature = 25- 21 = 4 c
Q= 500 g x 4.18 j/g/c x 4c = 8360 j
Considering the definition of pOH and strong base, the pOH of the aqueous solution is 1.14
The pOH (or potential OH) is a measure of the basicity or alkalinity of a solution and indicates the concentration of ion hydroxide (OH-).
pOH is expressed as the logarithm of the concentration of OH⁻ ions, with the sign changed:
pOH= - log [OH⁻]
On the other hand, a strong base is that base that in an aqueous solution completely dissociates between the cation and OH-.
LiOH is a strong base, so the concentration of the hydroxide will be equal to the concentration of OH-. This is:
[LiOH]= [OH-]= 0.073 M
Replacing in the definition of pOH:
pOH= -log (0.073 M)
<u><em>pOH= 1.14 </em></u>
In summary, the pOH of the aqueous solution is 1.14
Learn more: