The correct pairing of the volcano to its formation would be the composite volcano wherein it usually yields large and violent eruptions. In addition to that, composite volcanoes or also known as the stratovolcano is usually made of materials containing increasing layers of hardened lava.
3-Methylpentane is the IUPAC name for the substance.
whether in a continuous chain or a ring, the longest chain of carbons joined by a single bond serves as the basis for IUPAC nomenclature. According to a precise set of priorities, all deviations—whether they involve numerous bonds or atoms other than carbon and hydrogen—are denoted by prefixes or suffixes.
+3-Methylpentane is the IUPAC name for the substance in question. It has a lengthy chain of 5 carbon atoms, which gives it the prefix pent-, and a single bond is what gives it the postfix -ane (alkane). Given that the methyl group is present at the third carbon, it is 3-methylpentane.
Learn more about IUPAC Nomenclature here-
brainly.com/question/14379357
#SPJ9
Answer:
E) A, B, and C
Explanation:
Syn addition refers to the addition of two substituents on the same face or side of a double bond. This differed from anti addition which a occurs across opposite face of the double bond.
Hydrogenation, hydroboration and dihydroxylation all involve syn addition to the double bond, hence the answer chosen above.
Volume fraction = volume of the element / volume of the alloy
Volume = density * mass
Base: 100 grams of alloy
mass of tin = 15 grams
mass of lead = 85 grams
volume = mass / density
Volume of tin = 15g / 7.29 g/cm^3 = 2.06 cm^3
Volume of lead = 85 g / 11.27 g/cm^3 = 7.54 cm^3
Volume fraction of tin = 2.06 cm^3 / (2.06 cm^3 + 7.54 cm^3) = 0.215
Volume fraction of lead = 7.54 cm^3 / (2.06 cm^3 + 7.54 cm^3) = 0.785
As you can verify the sum of the two volume fractions equals 1: 0.215 + 0.785 = 1.000
Answer:
No
Explanation:
One mole of P₄ react with six moles of I₂ and gives 4 moles of PI₃.
When one gram phosphorus and 6 gram of iodine react they gives 8.234 g
ram of PI₃ .
Given data:
Mass of phosphorus = 1 g
Mass of iodine = 6 g
Mass of PI₃ = ?
Solution:
Chemical equation:
P₄ + 6I₂ → 4PI₃
Number of moles of P₄:
Number of moles = Mass /molar mass
Number of mole = 1 g / 123.9 g/mol
Number of moles = 0.01 mol
Number of moles of I₂:
Number of moles = Mass /molar mass
Number of moles = 6 g / 253.8 g/mol
Number of moles = 0.024 mol
Now we will compare the moles of PI₃ with I₂ and P₄.
I₂ : PI₃
6 : 4
0.024 :
4/6×0.024 = 0.02
P₄ : PI₃
1 : 4
0.01 : 4 × 0.01 = 0.04 mol
The number of moles of PI₃ produced by I₂ are less it will be limiting reactant.
Mass of PI₃ = moles × molar mass
Mass of PI₃ = 0.02 mol × 411.7 g/mol
Mass of PI₃ = 8.234 g