Answer:
Axis Labels
Explanation:
The axis labels are usually located on the x and y axis. This graph however is missing those.
hope this helps!
Answer: (Structure attached).
Explanation:
This type of reaction is an aromatic electrophilic substitution. The overall reaction is the replacement of a proton (H +) with an electrophile (E +) in the aromatic ring.
The aromatic ring in p-fluoroanisole has two sustituents, an <u>halogen</u> and a <u>methoxy group</u>, which are <em>ortho-para</em> directing substituents.
Aryl sulfonic acids are easily synthesized by an electrophilic substitution reaction aromatic using <u>sulfur trioxide as an electrophile</u> (very reactive).
The reaction occurs in three steps:
- The attack on the electrophile forms the sigma complex.
- The loss of a proton regenerates an aromatic ring.
- The sulfonate group can be protonated in the presence of a strong acid (H₂SO₄).
Normally, a mixture of <em>ortho-para</em> substituted products would be obtained. However, since both <em>para</em> positions are occupied, only the <em>ortho </em>substituted product is obtained here.
Answer:
Mass = 1274 .64 g it would be option C if it is converted into kilogram
1274 .64 / 1000 = 1.27 Kg
Explanation:
Given data:
Number of moles of C₂₀H₄₂ = 4.52 mol
Molar mass of carbon = 12 g/mol
Molar mass of hydrogen = 1.0 g/mol
Mass of C₂₀H₄₂ = ?
Solution:
Number of moles = mass / molar mass
Molar mass = 20× 12 + 42× 1.0 = 282 g/mol
Now we will put the values in formula:
Number of moles = mass / molar mass
4.52 mol = mass / 282 g /mol
Mass = 4.52 mol × 282 g/mol
Mass = 1274 .64 g
Option C coz it should be ( CNH4)2. Hope i cleared your doubt
This problem is to use the Claussius-Clapeyron Equation, which is:
ln [p2 / p1] = ΔH/R [1/T2 - 1/T1]
Where p2 and p1 and vapor pressure at estates 2 and 1
ΔH is the enthalpy of vaporization
R is the universal constant of gases = 8.314 J / mol*K
T2 and T1 are the temperatures at the estates 2 and 1.
The normal boiling point => 1 atm (the pressure of the atmosphere at sea level) = 101,325 kPa
Then p2 = 101.325 kPa
T2 = ?
p1 = 54.0 kPa
T1 = 57.8 °C + 273.15K = 330.95 K
ΔH = 33.05 kJ/mol = 33,050 J/mol
=> ln [101.325/54.0] = [ (33,050 J/mol) / (8.314 J/mol*K) ] * [1/x - 1/330.95]
=> 0.629349 = 3975.22 [1/x - 1/330.95] = > 1/x = 0.000157 + 1/330.95 = 0.003179
=> x = 314.6 K => 314.6 - 273.15 = 41.5°C
Answer: 41.5 °C