The atmosphere provides C02 for us, it protects us from the Sun's UV rays, it protects us from many objects in space that could crash into earth without it, and it holds the moisture in the air.
Answer:
Here, we are required to determine the total energy of the reaction and determine if the reaction is an endothermic or exothermic reaction.
The correct answer is option C.
First, we need to determine the energy of the reaction.
The energy of the reaction is the change in enthalpy between the product and reactants.
Change of Enthalpy,
Hreaction = Hproduct - Hreactant.
Therefore, for the reaction above, the change in enthalpy is:
Hreaction = 590kJ/mol - 581kJ/mol.
Hreaction = 9kJ/mol.
Hence, since the reaction has an enthalpy change of 9kJ/mol, the reaction is endothermic (i.e energy is absorbed).
Explanation:
<span>The number of electrons in an atom's outermost valence shell governs its bonding behavior.
In N</span>₂, three electrons are being shared by each nitrogen atom, making a total of 6 shared electrons.
In CCl₄, 4 electrons are being shared by each carbon atom and 1 electron is being shared by each chlorine atom
In SiO₂, 4 electrons are being shared by each silicon atom and 2 electrons are being shared by each oxygen atom.
In AlCl₃, 3 electrons are being shared by each aluminum atom and 1 electron is being shared by each Cl atom
In CaCl₂, 2 electrons are lost by the calcium atom and 1 electron is gained by each chlorine atom
In LiBr, 1 electron is lost by the lithium atom and 1 electron is gained by the bromine atom