Answer:
potassium contains both Ionic and covalent bonds
BaSO₄ is relatively harmless, but BaS is highly toxic.
BaSO₄ is quite insoluble (240 µg/100 mL). It is a <em>mild irritant</em> in cases of skin contact and inhalation. However, it is <em>safe enough</em> that health professionals ask patients to drink a suspension of BaSO₄. The Ba is opaque to X-rays, so it makes the stomach and intestines more visible to radiographers.
BaS is soluble (7.7 g/100 mL). It reacts slowly with water and more rapidly in the acid conditions of the stomach to <em>release H₂S</em>.
BaS + 2HCl ⟶ BaCl₂ + H₂S
An H₂S concentration of 60 mg/100 mL can be <em>fatal within 30 min</em>.
<em>Don’t eat barium sulfide!</em>
Because they’re both made up of two substances that are not chemically combined
Assuming the concentration of stock solution is 50% sodium phosphate buffer solution, the volume of stock solution required is 6 mL and the volume of water required is 6 mL.
<h3>What volume of a stock Sodium phosphate buffer and water is needed to 12 mL of 25% sodium phosphate buffer of pH 4?</h3>
The process of preparing solutions from stock solutions of higher concentration is known as dilution.
Dilution is done with the aid of the dilution formula given below:
where
- C1 is the concentration of stock solution
- V1 is the volume of stock solution required to prepare a diluted solution
- C2 is the concentration of the diluted solution prepared
- V2 is the final volume of the diluted solution
From the data provided:
C1 is not given
V1 is unknown
C2 = 25%
V2 = 12 mL
- Assuming C1 is 50% solution
Volume of stock, V1, required is calculated as follows:
V1 = C2V2/C1
V1 = 25 × 12 /50
V1 = 6 mL
Therefore, the volume of stock solution required is 6 mL and the volume of water required is 6 mL.
Learn more about dilution formula at: brainly.com/question/7208546
Answer:
B. Charges ( a slight positive charge on one end, and a slight negative charge on the other).