Answer:
5.66 %.
Explanation:
<em>mass percent is the ratio of the mass of the solute to the mass of the solution multiplied by 100.</em>
<em />
<em>mass % = (mass of solute/mass of solution) x 100.</em>
<em></em>
mass of potassium nitrite = 30.0 g,
mass of the solution = mass of water + mass of potassium nitrite = 500.0 g + 30.0 g = 530.0 g.
<em>∴ mass % = (mass of solute/mass of solution) x 100</em> = (30.0 g/530.0 g) x 100 = <em>5.66 %.</em>
a. 0.137
b. 0.0274
c. 1.5892 g
d. 0.1781
e. 5.6992 g
<h3>Further explanation</h3>
Given
Reaction
2 C4H10 + 13O2 -------> 8CO2 + 10H2O
2.46 g of water
Required
moles and mass
Solution
a. moles of water :
2.46 g : 18 g/mol = 0.137
b. moles of butane :
= 2/10 x mol water
= 2/10 x 0.137
= 0.0274
c. mass of butane :
= 0.0274 x 58 g/mol
= 1.5892 g
d. moles of oxygen :
= 13/2 x mol butane
= 13/2 x 0.0274
= 0.1781
e. mass of oxygen :
= 0.1781 x 32 g/mol
= 5.6992 g
Answer: M = 22/ (i x28.948)
Explanation:
Pi = osmotic pressure = 22atm
T = Temperature = 353K
M = Molarity = ?
R = gas constant = 0.082atm.L/mol/K
i = van’t Hoff factor
Pi = iMRT
M= Pi /(iRT) = 22 / ( i x 0.082 x 353)
M = 22/ (i x28.948)
Y=15 x=60
•1/3 •1/3
y=5 x=45
Answer:
If you are given a chemical equation and specific amounts for each reactant in grams, you have to follow these steps, in order, to determine how much product can possilby be made:
1. Convert each reactant into moles of the product.
2. Determine which reactant is the limiting reactant.
3. Convert the moles of product, from the limiting reactant, to grams.
Explanation: