The number of electrons it take to fill the mos formed from the combination of the 3s orbitals of two atoms simply is 14 electrons.
<h3>How electrons are distributed in the 3s orbitals.</h3>
The 3s orbital possess two different spherical nodes which is highly connected with the principal quantum number. In order words, it has 2 radial nodes. Also the shape of the 3s orbital is spherical in shape.
That being said, from the context of the above given task, the number of electrons which fill the mos formed from the combination of the 3s orbitals of two atoms is fourteen electrons.
However, the electron configuration of an atom simply is the arrangement of electrons in the electron shell or orbit of the atom of that element.
In conclusion, it can be deduced from above s orbital has a maximum of two electrons and this energy increases as the orbitals increases.
Read more on electron:
brainly.com/question/860094
#SPJ1
Answer:
Both B and D are correct.
Explanation:
B + H₂O ⇌ BH⁺ + OH⁻
If you add more products, the position of equilibrium will shift to the left to decrease their concentrations (Le Châtelier's Principle). The concentration of reactants will increase, but the equilibrium concentrations of products will also be higher than they were initially.
A is wrong. The equilibrium constant is a constant. It does not change when you change concentrations.
C is wrong. Per Le Châtelier's Principle, the concentrations must change when you ad a stress to a system at equilibrium.
(This is a poorly-worded question. "They" are probably expecting answer D.)