Answer:
wavelength = 0.534×10⁻¹⁶ m
Explanation:
Given data:
Frequency of wave = 5.62 ×10²⁴ Hz
Wavelength = ?
Solution:
Speed of photon = wavelength × frequency
wavelength = speed of photon / frequency
Now we will put the values in formula:
wavelength = 3×10⁸ m/s / 5.62 ×10²⁴ Hz
Hz = s⁻¹
wavelength = 3×10⁸ m/s / 5.62 ×10²⁴ s⁻¹
wavelength = 0.534×10⁻¹⁶ m
Answer:
a) At a given temperature, C₂H₆ has a higher vapor pressure than C₄H₁₀.
Explanation:
<em>Which statement below is true?
</em>
<em>a) At a given temperature, C₂H₆ has a higher vapor pressure than C₄H₁₀. </em>TRUE. C₂H₆ has a lower molar mass than C₄H₁₀ and a higher vapor pressure at most temperatures.
<em>b) The strongest intermolecular attractive forces present in liquid CCl₄ are dipole-dipole forces.</em> FALSE. CCl₄ is nonpolar, so the strongest intermolecular forces are dispersion forces.
<em>c) HCl has a higher boiling point than LiCl.</em> FALSE. LiCl (ionic compound) has a higher boiling point than HCl (covalent compound).
<em>d) H₂O has a greater polarizability than H₂Se.</em> FALSE. Se has a larger atomic radius than O which is why H₂Se has a greater polarizability than H₂O.
<em>e) In general, the stronger the intermolecular attractive forces, the lower the ∆Hºvap.</em> FALSE. In general, the stronger the intermolecular attractive forces, the higher the ∆Hºvap.
Explanation:
Meso compounds are optically inactive stereoisomers. Despite of having chiral carbon, they do not show optical activity because it has a plane of symmetry in its structure itself. It is superposable on its mirror image.
Aldo sugars on reaction which reducing agents such as , NaBH₄ reduces the carbonyl group in the sugar to alcohol and gives corresponding alditol.
<u>The D- aldohexose which on reduction gives a meso alditol are allose and galactose. </u>
<u>The structure is shown in the image below. Thus, in allitol and galactitol formed have internal plane of symmetry which makes the optically inactive.</u>
Answer:
c
Explanation:
all the atoms must be balanced.
Answer: None of the above statements is false.
Explanation:
In a solid substance, particles are closely held together due to which a solid substance has definite shape and volume. Therefore, solids are also incompressible in nature.
In liquids, the molecules are slightly away from each other due to which they can slide past each other. Hence, liquids do not have a fixed shape but they have a definite volume. Liquids are also incompressible in nature.
In gases, the particles are held by Vander waal forces due to which they move rapidly from one place to another. Hence, gases are highly compressible in nature.
Thus, we can conclude that none of the given statements are false.