Answer:
The enthalpy of the reaction is coming out to be -380.16 kJ.
Explanation:
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles. It is represented as 
The equation used to calculate enthalpy change is of a reaction is:
![\Delta H_{rxn}=\sum [n\times \Delta H_f(product)]-\sum [n\times \Delta H_f(reactant)]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_f%28product%29%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_f%28reactant%29%5D)
For the given chemical reaction:

The equation for the enthalpy change of the above reaction is:
![\Delta H_{rxn}=[(2 mol\times \Delta H_f_{(N_2O)})+(2 mol\times\Delta H_f_{(H_2O)} )]-[(1 mol\times \Delta H_f_{(N_2H_4)})+(1 mol\times \Delta H_f_{(N_2O_4)})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%282%20mol%5Ctimes%20%5CDelta%20H_f_%7B%28N_2O%29%7D%29%2B%282%20mol%5Ctimes%5CDelta%20H_f_%7B%28H_2O%29%7D%20%29%5D-%5B%281%20mol%5Ctimes%20%5CDelta%20H_f_%7B%28N_2H_4%29%7D%29%2B%281%20mol%5Ctimes%20%5CDelta%20H_f_%7B%28N_2O_4%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta H_{rxn}=[(2 mol\times 81.6 kJ/mol)+2 mol\times -241.8 kJ/mol)]-[(1 mol\times (50.6 kJ/mol))+(1 mol\times (9.16))]\\\\\Delta H_{rxn}=-380.16 kJ](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%282%20mol%5Ctimes%2081.6%20kJ%2Fmol%29%2B2%20mol%5Ctimes%20-241.8%20kJ%2Fmol%29%5D-%5B%281%20mol%5Ctimes%20%2850.6%20kJ%2Fmol%29%29%2B%281%20mol%5Ctimes%20%289.16%29%29%5D%5C%5C%5C%5C%5CDelta%20H_%7Brxn%7D%3D-380.16%20kJ)
Hence, the enthalpy of the reaction is coming out to be -380.16 kJ.
Virtual and enlarged..............
What grade are you in btw ?
Hello!
<span>
You'll need to react
7,5 moles of Sodium with sulfuric acid to produce 3.75 moles of sodium sulfate
</span>
First of all, you need to balance the reaction. The balanced reaction is shown below (ensuring that the Law of Conservation of Mass is met on both sides):
2Na + H₂SO₄ → Na₂SO₄ + H₂
Now, all that you have to do is to use molar equivalences in this reaction applying the coefficients to calculate the moles of Sodium that you'll need:
Have a nice day!
Answer:
177.1 L
Explanation:
The excersise can be solved, by the Ideal Gases Law.
P . V = n . R . T
In first step we need to determine the moles of gas:
We convert T° from, C° to K → 20°C + 273 = 293K
We convert P from mmHg to atm → 760 mmHg = 1atm
1Dm³ = 1L → 190L
We replace: 190 L . 1 atm = n . 0.082 . 293K
(190L.atm) / 0.082 . 293K = 7.91 moles.
We replace equation at STP conditions (1 atm and 273K)
V = (n . R .T) / P
V = (7.91 mol . 0.082 . 273K) / 1atm = 177.1 L
We can also make a rule of three:
At STP conditions 1 mol of gas occupies 22.4L
Then, 7.91 moles will be contained at (7.91 . 22.4) /1 = 177.1L
Answer : The amount of heat evolved by a reaction is, 4.81 kJ
Explanation :
Heat released by the reaction = Heat absorbed by the calorimeter + Heat absorbed by the water
![q=[q_1+q_2]](https://tex.z-dn.net/?f=q%3D%5Bq_1%2Bq_2%5D)
![q=[c_1\times \Delta T+m_2\times c_2\times \Delta T]](https://tex.z-dn.net/?f=q%3D%5Bc_1%5Ctimes%20%5CDelta%20T%2Bm_2%5Ctimes%20c_2%5Ctimes%20%5CDelta%20T%5D)
where,
q = heat released by the reaction
= heat absorbed by the calorimeter
= heat absorbed by the water
= specific heat of calorimeter = 
= specific heat of water = 
= mass of water = 254 g
= change in temperature = 
Now put all the given values in the above formula, we get:
![q=[(783J/^oC\times -2.28^oC)+(254g\times 4.184J/g^oC\times -2.28^oC)]](https://tex.z-dn.net/?f=q%3D%5B%28783J%2F%5EoC%5Ctimes%20-2.28%5EoC%29%2B%28254g%5Ctimes%204.184J%2Fg%5EoC%5Ctimes%20-2.28%5EoC%29%5D)

Therefore, the amount of heat evolved by a reaction is, 4.81 kJ