Answer:
![[SO_2Cl_2]=0.0175M](https://tex.z-dn.net/?f=%5BSO_2Cl_2%5D%3D0.0175M)
Explanation:
Hello!
In this case, considering that the decomposition reaction of SO2Cl2 is first-order, we can write the rate law shown below:
![r=-k[SO_2Cl_2]](https://tex.z-dn.net/?f=r%3D-k%5BSO_2Cl_2%5D)
We also consider that the integrated rate law has been already reported as:
![[SO_2Cl_2]=[SO_2Cl_2]_0exp(-kt)](https://tex.z-dn.net/?f=%5BSO_2Cl_2%5D%3D%5BSO_2Cl_2%5D_0exp%28-kt%29)
Thus, by plugging in the initial concentration, rate constant and elapsed time we obtain:
![[SO_2Cl_2]=0.0225Mexp(-2.90x10^{-4}s^{-1}*865s)](https://tex.z-dn.net/?f=%5BSO_2Cl_2%5D%3D0.0225Mexp%28-2.90x10%5E%7B-4%7Ds%5E%7B-1%7D%2A865s%29)
![[SO_2Cl_2]=0.0175M](https://tex.z-dn.net/?f=%5BSO_2Cl_2%5D%3D0.0175M)
Best regards!
Answer:
1st one is right..it helps filter waste inside the cell.
Answer:
My personal favorite is dragon ball super.
Explanation:
Moles of glucose = Molarity x volume solution
= 4.5 x 1.5
= 6.75 moles.
Hope this helps, have a great day ahead!
Mr: 207.2
m=n×Mr= 6.53×207.2= 1353.02g